The index of a subgroup $G'$ of a group $G$, denoted $[G:G']$, is the order of the set of left cosets of $G'$ in $G$.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by John Jones on 2019-05-23 19:01:50
Referred to by:
History:
(expand/hide all)
Differences
(show/hide)
- cmf.petersson_scalar_product
- columns.gps_groups.transitive_degree
- ec.q.faltings_ratio
- gg.resolvents
- group.alternating
- group.permutation_degree
- group.subgroup.hall
- group.subgroup_label
- group.subgroups_beyond_bound
- group.transitive_degree
- group.weyl_group
- mf.gl2.history.new
- rcs.cande.gg
- specialfunction.poincare
- lmfdb/groups/abstract/main.py (line 2527)
- lmfdb/groups/abstract/templates/abstract-show-subgroup.html (line 17)