Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
1.27.ak |
$1$ |
$\F_{3^{3}}$ |
$3$ |
✓ |
✓ |
|
✓ |
|
|
✓ |
✓ |
$1 - 10 x + 27 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$18$ |
$[18, 684, 19494, 530784, 14347458, 387423756, 10460425014, 282430166400, 7625601845298, 205891158689964]$ |
$18$ |
$[18, 684, 19494, 530784, 14347458, 387423756, 10460425014, 282430166400, 7625601845298, 205891158689964]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
1.27.aj |
$1$ |
$\F_{3^{3}}$ |
$3$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 - 9 x + 27 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$19$ |
$[19, 703, 19684, 532171, 14355469, 387459856, 10460530351, 282430067923, 7625597484988, 205891117745743]$ |
$19$ |
$[19, 703, 19684, 532171, 14355469, 387459856, 10460530351, 282430067923, 7625597484988, 205891117745743]$ |
$1$ |
$0$ |
$3$ |
$3$ |
$6$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.27.ai |
$1$ |
$\F_{3^{3}}$ |
$3$ |
✓ |
✓ |
|
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 27 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$20$ |
$[20, 720, 19820, 532800, 14356100, 387441360, 10460325980, 282428755200, 7625591969780, 205891109067600]$ |
$20$ |
$[20, 720, 19820, 532800, 14356100, 387441360, 10460325980, 282428755200, 7625591969780, 205891109067600]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |
1.27.ah |
$1$ |
$\F_{3^{3}}$ |
$3$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 27 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$21$ |
$[21, 735, 19908, 532875, 14352891, 387409680, 10460169993, 282428545875, 7625595497436, 205891144928175]$ |
$21$ |
$[21, 735, 19908, 532875, 14352891, 387409680, 10460169993, 282428545875, 7625595497436, 205891144928175]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-59}) \) |
$C_2$ |
simple |
1.27.af |
$1$ |
$\F_{3^{3}}$ |
$3$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 27 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$23$ |
$[23, 759, 19964, 532059, 14344433, 387381456, 10460278859, 282430218675, 7625602903268, 205891140766839]$ |
$23$ |
$[23, 759, 19964, 532059, 14344433, 387381456, 10460278859, 282430218675, 7625602903268, 205891140766839]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-83}) \) |
$C_2$ |
simple |
1.27.ae |
$1$ |
$\F_{3^{3}}$ |
$3$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 27 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$24$ |
$[24, 768, 19944, 531456, 14341944, 387392256, 10460428296, 282430599168, 7625599708248, 205891112295168]$ |
$24$ |
$[24, 768, 19944, 531456, 14341944, 387392256, 10460428296, 282430599168, 7625599708248, 205891112295168]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-23}) \) |
$C_2$ |
simple |
1.27.ac |
$1$ |
$\F_{3^{3}}$ |
$3$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 27 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$26$ |
$[26, 780, 19838, 530400, 14342666, 387436140, 10460553038, 282429513600, 7625592043706, 205891121829900]$ |
$26$ |
$[26, 780, 19838, 530400, 14342666, 387436140, 10460553038, 282429513600, 7625592043706, 205891121829900]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-26}) \) |
$C_2$ |
simple |
1.27.ab |
$1$ |
$\F_{3^{3}}$ |
$3$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 27 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$27$ |
$[27, 783, 19764, 530091, 14345397, 387453456, 10460480967, 282428774163, 7625593273068, 205891148465343]$ |
$27$ |
$[27, 783, 19764, 530091, 14345397, 387453456, 10460480967, 282428774163, 7625593273068, 205891148465343]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-107}) \) |
$C_2$ |
simple |
1.27.a |
$1$ |
$\F_{3^{3}}$ |
$3$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$1 + 27 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$28$ |
$[28, 784, 19684, 529984, 14348908, 387459856, 10460353204, 282428473600, 7625597484988, 205891160792464]$ |
$28$ |
$[28, 784, 19684, 529984, 14348908, 387459856, 10460353204, 282428473600, 7625597484988, 205891160792464]$ |
$2$ |
$0$ |
$3$ |
$6$ |
$2$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.27.b |
$1$ |
$\F_{3^{3}}$ |
$3$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 27 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$29$ |
$[29, 783, 19604, 530091, 14352419, 387453456, 10460225441, 282428774163, 7625601696908, 205891148465343]$ |
$29$ |
$[29, 783, 19604, 530091, 14352419, 387453456, 10460225441, 282428774163, 7625601696908, 205891148465343]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-107}) \) |
$C_2$ |
simple |
1.27.c |
$1$ |
$\F_{3^{3}}$ |
$3$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 27 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$30$ |
$[30, 780, 19530, 530400, 14355150, 387436140, 10460153370, 282429513600, 7625602926270, 205891121829900]$ |
$30$ |
$[30, 780, 19530, 530400, 14355150, 387436140, 10460153370, 282429513600, 7625602926270, 205891121829900]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-26}) \) |
$C_2$ |
simple |
1.27.e |
$1$ |
$\F_{3^{3}}$ |
$3$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 27 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$32$ |
$[32, 768, 19424, 531456, 14355872, 387392256, 10460278112, 282430599168, 7625595261728, 205891112295168]$ |
$32$ |
$[32, 768, 19424, 531456, 14355872, 387392256, 10460278112, 282430599168, 7625595261728, 205891112295168]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-23}) \) |
$C_2$ |
simple |
1.27.f |
$1$ |
$\F_{3^{3}}$ |
$3$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 27 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$33$ |
$[33, 759, 19404, 532059, 14353383, 387381456, 10460427549, 282430218675, 7625592066708, 205891140766839]$ |
$33$ |
$[33, 759, 19404, 532059, 14353383, 387381456, 10460427549, 282430218675, 7625592066708, 205891140766839]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-83}) \) |
$C_2$ |
simple |
1.27.h |
$1$ |
$\F_{3^{3}}$ |
$3$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 7 x + 27 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$35$ |
$[35, 735, 19460, 532875, 14344925, 387409680, 10460536415, 282428545875, 7625599472540, 205891144928175]$ |
$35$ |
$[35, 735, 19460, 532875, 14344925, 387409680, 10460536415, 282428545875, 7625599472540, 205891144928175]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-59}) \) |
$C_2$ |
simple |
1.27.i |
$1$ |
$\F_{3^{3}}$ |
$3$ |
✓ |
✓ |
|
✓ |
|
|
✓ |
✓ |
$1 + 8 x + 27 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$36$ |
$[36, 720, 19548, 532800, 14341716, 387441360, 10460380428, 282428755200, 7625603000196, 205891109067600]$ |
$36$ |
$[36, 720, 19548, 532800, 14341716, 387441360, 10460380428, 282428755200, 7625603000196, 205891109067600]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |
1.27.j |
$1$ |
$\F_{3^{3}}$ |
$3$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 9 x + 27 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$37$ |
$[37, 703, 19684, 532171, 14342347, 387459856, 10460176057, 282430067923, 7625597484988, 205891117745743]$ |
$37$ |
$[37, 703, 19684, 532171, 14342347, 387459856, 10460176057, 282430067923, 7625597484988, 205891117745743]$ |
$1$ |
$0$ |
$3$ |
$6$ |
$6$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.27.k |
$1$ |
$\F_{3^{3}}$ |
$3$ |
✓ |
✓ |
|
✓ |
|
|
✓ |
✓ |
$1 + 10 x + 27 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$38$ |
$[38, 684, 19874, 530784, 14350358, 387423756, 10460281394, 282430166400, 7625593124678, 205891158689964]$ |
$38$ |
$[38, 684, 19874, 530784, 14350358, 387423756, 10460281394, 282430166400, 7625593124678, 205891158689964]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
1.29.ak |
$1$ |
$\F_{29}$ |
$29$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 10 x + 29 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$20$ |
$[20, 800, 24260, 707200, 20514100, 594855200, 17250109540, 500247820800, 14507153290580, 420707265620000]$ |
$20$ |
$[20, 800, 24260, 707200, 20514100, 594855200, 17250109540, 500247820800, 14507153290580, 420707265620000]$ |
$2$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
1.29.aj |
$1$ |
$\F_{29}$ |
$29$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 29 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$21$ |
$[21, 819, 24444, 708435, 20519961, 594869184, 17250033549, 500246498115, 14507142182316, 420707196688779]$ |
$21$ |
$[21, 819, 24444, 708435, 20519961, 594869184, 17250033549, 500246498115, 14507142182316, 420707196688779]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-35}) \) |
$C_2$ |
simple |
1.29.ai |
$1$ |
$\F_{29}$ |
$29$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 29 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$22$ |
$[22, 836, 24574, 708928, 20518982, 594838244, 17249768558, 500245118208, 14507138742646, 420707212982276]$ |
$22$ |
$[22, 836, 24574, 708928, 20518982, 594838244, 17249768558, 500245118208, 14507138742646, 420707212982276]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-13}) \) |
$C_2$ |
simple |
1.29.ah |
$1$ |
$\F_{29}$ |
$29$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 29 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$23$ |
$[23, 851, 24656, 708883, 20514643, 594801344, 17249621167, 500245264323, 14507145334544, 420707262121451]$ |
$23$ |
$[23, 851, 24656, 708883, 20514643, 594801344, 17249621167, 500245264323, 14507145334544, 420707262121451]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
1.29.ag |
$1$ |
$\F_{29}$ |
$29$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 29 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$24$ |
$[24, 864, 24696, 708480, 20509464, 594778464, 17249656056, 500246392320, 14507152239384, 420707271479904]$ |
$24$ |
$[24, 864, 24696, 708480, 20509464, 594778464, 17249656056, 500246392320, 14507152239384, 420707271479904]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-5}) \) |
$C_2$ |
simple |
1.29.af |
$1$ |
$\F_{29}$ |
$29$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 29 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$25$ |
$[25, 875, 24700, 707875, 20505125, 594776000, 17249814425, 500247475875, 14507153085100, 420707238021875]$ |
$25$ |
$[25, 875, 24700, 707875, 20505125, 594776000, 17249814425, 500247475875, 14507153085100, 420707238021875]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-91}) \) |
$C_2$ |
simple |
1.29.ae |
$1$ |
$\F_{29}$ |
$29$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 29 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$26$ |
$[26, 884, 24674, 707200, 20502586, 594791444, 17249997154, 500247820800, 14507148102746, 420707200980404]$ |
$26$ |
$[26, 884, 24674, 707200, 20502586, 594791444, 17249997154, 500247820800, 14507148102746, 420707200980404]$ |
$3$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
1.29.ad |
$1$ |
$\F_{29}$ |
$29$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 29 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$27$ |
$[27, 891, 24624, 706563, 20502207, 594817344, 17250117723, 500247310563, 14507141667696, 420707194345251]$ |
$27$ |
$[27, 891, 24624, 706563, 20502207, 594817344, 17250117723, 500247310563, 14507141667696, 420707194345251]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-107}) \) |
$C_2$ |
simple |
1.29.ac |
$1$ |
$\F_{29}$ |
$29$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 29 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$28$ |
$[28, 896, 24556, 706048, 20503868, 594844544, 17250129932, 500246304768, 14507138404444, 420707221294976]$ |
$28$ |
$[28, 896, 24556, 706048, 20503868, 594844544, 17250129932, 500246304768, 14507138404444, 420707221294976]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
1.29.ab |
$1$ |
$\F_{29}$ |
$29$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 29 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$29$ |
$[29, 899, 24476, 705715, 20507089, 594864704, 17250035461, 500245372035, 14507140319564, 420707257830779]$ |
$29$ |
$[29, 899, 24476, 705715, 20507089, 594864704, 17250035461, 500245372035, 14507140319564, 420707257830779]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-115}) \) |
$C_2$ |
simple |
1.29.a |
$1$ |
$\F_{29}$ |
$29$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 29 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$30$ |
$[30, 900, 24390, 705600, 20511150, 594872100, 17249876310, 500244998400, 14507145975870, 420707274322500]$ |
$30$ |
$[30, 900, 24390, 705600, 20511150, 594872100, 17249876310, 500244998400, 14507145975870, 420707274322500]$ |
$6$ |
$0$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-29}) \) |
$C_2$ |
simple |
1.29.b |
$1$ |
$\F_{29}$ |
$29$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 29 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$31$ |
$[31, 899, 24304, 705715, 20515211, 594864704, 17249717159, 500245372035, 14507151632176, 420707257830779]$ |
$31$ |
$[31, 899, 24304, 705715, 20515211, 594864704, 17249717159, 500245372035, 14507151632176, 420707257830779]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-115}) \) |
$C_2$ |
simple |
1.29.c |
$1$ |
$\F_{29}$ |
$29$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 29 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$32$ |
$[32, 896, 24224, 706048, 20518432, 594844544, 17249622688, 500246304768, 14507153547296, 420707221294976]$ |
$32$ |
$[32, 896, 24224, 706048, 20518432, 594844544, 17249622688, 500246304768, 14507153547296, 420707221294976]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
1.29.d |
$1$ |
$\F_{29}$ |
$29$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 29 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$33$ |
$[33, 891, 24156, 706563, 20520093, 594817344, 17249634897, 500247310563, 14507150284044, 420707194345251]$ |
$33$ |
$[33, 891, 24156, 706563, 20520093, 594817344, 17249634897, 500247310563, 14507150284044, 420707194345251]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-107}) \) |
$C_2$ |
simple |
1.29.e |
$1$ |
$\F_{29}$ |
$29$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 29 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$34$ |
$[34, 884, 24106, 707200, 20519714, 594791444, 17249755466, 500247820800, 14507143848994, 420707200980404]$ |
$34$ |
$[34, 884, 24106, 707200, 20519714, 594791444, 17249755466, 500247820800, 14507143848994, 420707200980404]$ |
$3$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
1.29.f |
$1$ |
$\F_{29}$ |
$29$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 29 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$35$ |
$[35, 875, 24080, 707875, 20517175, 594776000, 17249938195, 500247475875, 14507138866640, 420707238021875]$ |
$35$ |
$[35, 875, 24080, 707875, 20517175, 594776000, 17249938195, 500247475875, 14507138866640, 420707238021875]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-91}) \) |
$C_2$ |
simple |
1.29.g |
$1$ |
$\F_{29}$ |
$29$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 6 x + 29 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$36$ |
$[36, 864, 24084, 708480, 20512836, 594778464, 17250096564, 500246392320, 14507139712356, 420707271479904]$ |
$36$ |
$[36, 864, 24084, 708480, 20512836, 594778464, 17250096564, 500246392320, 14507139712356, 420707271479904]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-5}) \) |
$C_2$ |
simple |
1.29.h |
$1$ |
$\F_{29}$ |
$29$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 7 x + 29 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$37$ |
$[37, 851, 24124, 708883, 20507657, 594801344, 17250131453, 500245264323, 14507146617196, 420707262121451]$ |
$37$ |
$[37, 851, 24124, 708883, 20507657, 594801344, 17250131453, 500245264323, 14507146617196, 420707262121451]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
1.29.i |
$1$ |
$\F_{29}$ |
$29$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 8 x + 29 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$38$ |
$[38, 836, 24206, 708928, 20503318, 594838244, 17249984062, 500245118208, 14507153209094, 420707212982276]$ |
$38$ |
$[38, 836, 24206, 708928, 20503318, 594838244, 17249984062, 500245118208, 14507153209094, 420707212982276]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-13}) \) |
$C_2$ |
simple |
1.29.j |
$1$ |
$\F_{29}$ |
$29$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 9 x + 29 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$39$ |
$[39, 819, 24336, 708435, 20502339, 594869184, 17249719071, 500246498115, 14507149769424, 420707196688779]$ |
$39$ |
$[39, 819, 24336, 708435, 20502339, 594869184, 17249719071, 500246498115, 14507149769424, 420707196688779]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-35}) \) |
$C_2$ |
simple |
1.29.k |
$1$ |
$\F_{29}$ |
$29$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 10 x + 29 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$40$ |
$[40, 800, 24520, 707200, 20508200, 594855200, 17249643080, 500247820800, 14507138661160, 420707265620000]$ |
$40$ |
$[40, 800, 24520, 707200, 20508200, 594855200, 17249643080, 500247820800, 14507138661160, 420707265620000]$ |
$2$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
1.31.al |
$1$ |
$\F_{31}$ |
$31$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 11 x + 31 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$21$ |
$[21, 903, 29484, 921963, 28621551, 887468400, 27512461641, 852890454003, 26439620469444, 819628286463903]$ |
$21$ |
$[21, 903, 29484, 921963, 28621551, 887468400, 27512461641, 852890454003, 26439620469444, 819628286463903]$ |
$1$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.31.ak |
$1$ |
$\F_{31}$ |
$31$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 10 x + 31 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$22$ |
$[22, 924, 29722, 924000, 28636102, 887558364, 27512945482, 852892656000, 26439628073782, 819628295936604]$ |
$22$ |
$[22, 924, 29722, 924000, 28636102, 887558364, 27512945482, 852892656000, 26439628073782, 819628295936604]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-6}) \) |
$C_2$ |
simple |
1.31.aj |
$1$ |
$\F_{31}$ |
$31$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 31 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$23$ |
$[23, 943, 29900, 925083, 28639853, 887551600, 27512713643, 852890447763, 26439613768100, 819628229727703]$ |
$23$ |
$[23, 943, 29900, 925083, 28639853, 887551600, 27512713643, 852890447763, 26439613768100, 819628229727703]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \) |
$C_2$ |
simple |
1.31.ai |
$1$ |
$\F_{31}$ |
$31$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 31 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$24$ |
$[24, 960, 30024, 925440, 28637304, 887509440, 27512407464, 852889205760, 26439613913304, 819628277784000]$ |
$24$ |
$[24, 960, 30024, 925440, 28637304, 887509440, 27512407464, 852889205760, 26439613913304, 819628277784000]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-15}) \) |
$C_2$ |
simple |
1.31.ah |
$1$ |
$\F_{31}$ |
$31$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 31 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$25$ |
$[25, 975, 30100, 925275, 28631875, 887468400, 27512282725, 852889811475, 26439623851900, 819628336824375]$ |
$25$ |
$[25, 975, 30100, 925275, 28631875, 887468400, 27512282725, 852889811475, 26439623851900, 819628336824375]$ |
$3$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.31.ag |
$1$ |
$\F_{31}$ |
$31$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 31 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$26$ |
$[26, 988, 30134, 924768, 28626026, 887446300, 27512366726, 852891331968, 26439631596794, 819628334467228]$ |
$26$ |
$[26, 988, 30134, 924768, 28626026, 887446300, 27512366726, 852891331968, 26439631596794, 819628334467228]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-22}) \) |
$C_2$ |
simple |
1.31.af |
$1$ |
$\F_{31}$ |
$31$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 31 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$27$ |
$[27, 999, 30132, 924075, 28621377, 887447664, 27512575047, 852892578675, 26439631077852, 819628283788479]$ |
$27$ |
$[27, 999, 30132, 924075, 28621377, 887447664, 27512575047, 852892578675, 26439631077852, 819628283788479]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |
1.31.ae |
$1$ |
$\F_{31}$ |
$31$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 31 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$28$ |
$[28, 1008, 30100, 923328, 28618828, 887468400, 27512793028, 852892846848, 26439623851900, 819628237654128]$ |
$28$ |
$[28, 1008, 30100, 923328, 28618828, 887468400, 27512793028, 852892846848, 26439623851900, 819628237654128]$ |
$6$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.31.ad |
$1$ |
$\F_{31}$ |
$31$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 31 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$29$ |
$[29, 1015, 30044, 922635, 28618679, 887499760, 27512927009, 852892097715, 26439615641684, 819628234555375]$ |
$29$ |
$[29, 1015, 30044, 922635, 28618679, 887499760, 27512927009, 852892097715, 26439615641684, 819628234555375]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-115}) \) |
$C_2$ |
simple |
1.31.ac |
$1$ |
$\F_{31}$ |
$31$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 31 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$30$ |
$[30, 1020, 29970, 922080, 28620750, 887531580, 27512930370, 852890805120, 26439611892030, 819628273645500]$ |
$30$ |
$[30, 1020, 29970, 922080, 28620750, 887531580, 27512930370, 852890805120, 26439611892030, 819628273645500]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-30}) \) |
$C_2$ |
simple |
1.31.ab |
$1$ |
$\F_{31}$ |
$31$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 31 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$31$ |
$[31, 1023, 29884, 921723, 28624501, 887554800, 27512809411, 852889648083, 26439614717044, 819628322607303]$ |
$31$ |
$[31, 1023, 29884, 921723, 28624501, 887554800, 27512809411, 852889648083, 26439614717044, 819628322607303]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-123}) \) |
$C_2$ |
simple |
1.31.a |
$1$ |
$\F_{31}$ |
$31$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 31 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$32$ |
$[32, 1024, 29792, 921600, 28629152, 887563264, 27512614112, 852889190400, 26439622160672, 819628344239104]$ |
$32$ |
$[32, 1024, 29792, 921600, 28629152, 887563264, 27512614112, 852889190400, 26439622160672, 819628344239104]$ |
$6$ |
$0$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-31}) \) |
$C_2$ |
simple |