Properties

 Label 1.27.aj Base Field $\F_{3^{3}}$ Dimension $1$ Ordinary No $p$-rank $0$ Principally polarizable Yes Contains a Jacobian Yes

Invariants

 Base field: $\F_{3^{3}}$ Dimension: $1$ Weil polynomial: $1 - 9 x + 27 x^{2}$ Frobenius angles: $\pm0.166666666667$ Angle rank: $0$ (numerical) Number field: $$\Q(\sqrt{-3})$$ Galois group: $C_2$ Jacobians: 1

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is supersingular.

 $p$-rank: $0$ Slopes: $[1/2, 1/2]$

Point counts

This isogeny class contains the Jacobians of 1 curves, and hence is principally polarizable:

 $r$ 1 2 3 4 5 6 7 8 9 10 $A(\F_{q^r})$ 19 703 19684 532171 14355469 387459856 10460530351 282430067923 7625597484988 205891117745743

 $r$ 1 2 3 4 5 6 7 8 9 10 $C(\F_{q^r})$ 19 703 19684 532171 14355469 387459856 10460530351 282430067923 7625597484988 205891117745743

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{3^{3}}$
 The endomorphism algebra of this simple isogeny class is $$\Q(\sqrt{-3})$$.
Endomorphism algebra over $\overline{\F}_{3^{3}}$
 The base change of $A$ to $\F_{3^{18}}$ is the simple isogeny class 1.387420489.cggc and its endomorphism algebra is the quaternion algebra over $$\Q$$ ramified at $3$ and $\infty$.
All geometric endomorphisms are defined over $\F_{3^{18}}$.
Remainder of endomorphism lattice by field
• Endomorphism algebra over $\F_{3^{6}}$  The base change of $A$ to $\F_{3^{6}}$ is the simple isogeny class 1.729.abb and its endomorphism algebra is $$\Q(\sqrt{-3})$$.
• Endomorphism algebra over $\F_{3^{9}}$  The base change of $A$ to $\F_{3^{9}}$ is the simple isogeny class 1.19683.a and its endomorphism algebra is $$\Q(\sqrt{-3})$$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
 Twist Extension Degree Common base change 1.27.j $2$ 1.729.abb 1.27.a $3$ (not in LMFDB) 1.27.j $3$ (not in LMFDB)