Invariants
| Base field: | $\F_{3}$ |
| Dimension: | $4$ |
| L-polynomial: | $( 1 + 2 x + 3 x^{2} )^{2}( 1 + 3 x + 5 x^{2} + 9 x^{3} + 9 x^{4} )$ |
| $1 + 7 x + 27 x^{2} + 71 x^{3} + 140 x^{4} + 213 x^{5} + 243 x^{6} + 189 x^{7} + 81 x^{8}$ | |
| Frobenius angles: | $\pm0.472142961319$, $\pm0.695913276015$, $\pm0.695913276015$, $\pm0.902473643995$ |
| Angle rank: | $3$ (numerical) |
| Jacobians: | $1$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 3$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $4$ |
| Slopes: | $[0, 0, 0, 0, 1, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $972$ | $11664$ | $341172$ | $45536256$ | $3424721472$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $11$ | $15$ | $17$ | $87$ | $236$ | $699$ | $2363$ | $6495$ | $18845$ | $60810$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobian of 1 curve (which is not hyperelliptic):
- $x t-y z=x y^2+x^2 z-z^3+x^2 t+x y t+y^2 t+x t^2-y t^2+z t^2=0$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{3}$.
Endomorphism algebra over $\F_{3}$The isogeny class factors as 1.3.c 2 $\times$ 2.3.d_f and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.