Properties

Label 4.3.g_x_ci_er
Base field $\F_{3}$
Dimension $4$
$p$-rank $4$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Downloads

Learn more

Invariants

Base field:  $\F_{3}$
Dimension:  $4$
L-polynomial:  $( 1 + 3 x + 7 x^{2} + 9 x^{3} + 9 x^{4} )^{2}$
  $1 + 6 x + 23 x^{2} + 60 x^{3} + 121 x^{4} + 180 x^{5} + 207 x^{6} + 162 x^{7} + 81 x^{8}$
Frobenius angles:  $\pm0.535169663346$, $\pm0.535169663346$, $\pm0.772732979144$, $\pm0.772732979144$
Angle rank:  $2$ (numerical)
Jacobians:  $1$
Cyclic group of points:    no
Non-cyclic primes:   $29$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $4$
Slopes:  $[0, 0, 0, 0, 1, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $841$ $21025$ $303601$ $42575625$ $3152148736$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $10$ $20$ $10$ $84$ $220$ $860$ $2110$ $6084$ $20710$ $58850$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobian of 1 curve (which is not hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{3}$.

Endomorphism algebra over $\F_{3}$
The isogeny class factors as 2.3.d_h 2 and its endomorphism algebra is $\mathrm{M}_{2}($4.0.1525.1$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
4.3.ag_x_aci_er$2$(not in LMFDB)
4.3.a_f_a_n$2$(not in LMFDB)
4.3.ad_c_ad_n$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
4.3.ag_x_aci_er$2$(not in LMFDB)
4.3.a_f_a_n$2$(not in LMFDB)
4.3.ad_c_ad_n$3$(not in LMFDB)
4.3.a_af_a_n$4$(not in LMFDB)
4.3.ae_d_k_abd$5$(not in LMFDB)
4.3.b_d_f_q$5$(not in LMFDB)
4.3.d_c_d_n$6$(not in LMFDB)
4.3.ab_d_af_q$10$(not in LMFDB)
4.3.e_d_ak_abd$10$(not in LMFDB)