Invariants
| Base field: | $\F_{3}$ |
| Dimension: | $4$ |
| L-polynomial: | $( 1 + 3 x + 7 x^{2} + 9 x^{3} + 9 x^{4} )^{2}$ |
| $1 + 6 x + 23 x^{2} + 60 x^{3} + 121 x^{4} + 180 x^{5} + 207 x^{6} + 162 x^{7} + 81 x^{8}$ | |
| Frobenius angles: | $\pm0.535169663346$, $\pm0.535169663346$, $\pm0.772732979144$, $\pm0.772732979144$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $1$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $29$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $4$ |
| Slopes: | $[0, 0, 0, 0, 1, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $841$ | $21025$ | $303601$ | $42575625$ | $3152148736$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $10$ | $20$ | $10$ | $84$ | $220$ | $860$ | $2110$ | $6084$ | $20710$ | $58850$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobian of 1 curve (which is not hyperelliptic):
- $x^2+y^2+z t=y^3+x z^2-x t^2-y t^2=0$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{3}$.
Endomorphism algebra over $\F_{3}$| The isogeny class factors as 2.3.d_h 2 and its endomorphism algebra is $\mathrm{M}_{2}($4.0.1525.1$)$ |
Base change
This is a primitive isogeny class.