Invariants
Base field: | $\F_{3}$ |
Dimension: | $4$ |
L-polynomial: | $( 1 + x + 2 x^{2} + 3 x^{3} + 9 x^{4} )^{2}$ |
$1 + 2 x + 5 x^{2} + 10 x^{3} + 28 x^{4} + 30 x^{5} + 45 x^{6} + 54 x^{7} + 81 x^{8}$ | |
Frobenius angles: | $\pm0.351145371037$, $\pm0.351145371037$, $\pm0.764917483542$, $\pm0.764917483542$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $3$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $4$ |
Slopes: | $[0, 0, 0, 0, 1, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $256$ | $16384$ | $692224$ | $75759616$ | $2320926976$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $6$ | $16$ | $36$ | $128$ | $146$ | $658$ | $2246$ | $6528$ | $20700$ | $58576$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which 1 is hyperelliptic):
- $y^2=2 x^9+2 x^6+2 x^5+2 x^4+2 x$
- $x y+t^2=x^2 z-y^2 z-z^3+y^2 t+z^2 t=0$
- $x^2+y^2+z t=y^2 z+y z^2+y z t-z^2 t+x t^2+z t^2=0$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{3}$.
Endomorphism algebra over $\F_{3}$The isogeny class factors as 2.3.b_c 2 and its endomorphism algebra is $\mathrm{M}_{2}($4.0.3757.1$)$ |
Base change
This is a primitive isogeny class.