Properties

Label 4.3.c_f_k_bc
Base field $\F_{3}$
Dimension $4$
$p$-rank $4$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Downloads

Learn more

Invariants

Base field:  $\F_{3}$
Dimension:  $4$
L-polynomial:  $( 1 + x + 2 x^{2} + 3 x^{3} + 9 x^{4} )^{2}$
  $1 + 2 x + 5 x^{2} + 10 x^{3} + 28 x^{4} + 30 x^{5} + 45 x^{6} + 54 x^{7} + 81 x^{8}$
Frobenius angles:  $\pm0.351145371037$, $\pm0.351145371037$, $\pm0.764917483542$, $\pm0.764917483542$
Angle rank:  $2$ (numerical)
Jacobians:  $3$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $4$
Slopes:  $[0, 0, 0, 0, 1, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $256$ $16384$ $692224$ $75759616$ $2320926976$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $6$ $16$ $36$ $128$ $146$ $658$ $2246$ $6528$ $20700$ $58576$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which 1 is hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{3}$.

Endomorphism algebra over $\F_{3}$
The isogeny class factors as 2.3.b_c 2 and its endomorphism algebra is $\mathrm{M}_{2}($4.0.3757.1$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
4.3.ac_f_ak_bc$2$(not in LMFDB)
4.3.a_d_a_q$2$(not in LMFDB)
4.3.ab_ab_e_ai$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
4.3.ac_f_ak_bc$2$(not in LMFDB)
4.3.a_d_a_q$2$(not in LMFDB)
4.3.ab_ab_e_ai$3$(not in LMFDB)
4.3.a_ad_a_q$4$(not in LMFDB)
4.3.b_ab_ae_ai$6$(not in LMFDB)