Properties

Label 4.3.c_e_i_w
Base field $\F_{3}$
Dimension $4$
$p$-rank $4$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Downloads

Learn more

Invariants

Base field:  $\F_{3}$
Dimension:  $4$
L-polynomial:  $1 + 2 x + 4 x^{2} + 8 x^{3} + 22 x^{4} + 24 x^{5} + 36 x^{6} + 54 x^{7} + 81 x^{8}$
Frobenius angles:  $\pm0.280972140195$, $\pm0.400662298547$, $\pm0.735409692945$, $\pm0.820692504341$
Angle rank:  $4$ (numerical)
Number field:  8.0.56146817344.1
Galois group:  $C_2 \wr S_4$
Jacobians:  $5$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $4$
Slopes:  $[0, 0, 0, 0, 1, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $232$ $12992$ $712936$ $70052864$ $2629335112$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $6$ $14$ $36$ $122$ $176$ $722$ $2190$ $6458$ $19818$ $58794$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 5 curves (of which 1 is hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{3}$.

Endomorphism algebra over $\F_{3}$
The endomorphism algebra of this simple isogeny class is 8.0.56146817344.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
4.3.ac_e_ai_w$2$(not in LMFDB)