Invariants
Base field: | $\F_{3}$ |
Dimension: | $4$ |
L-polynomial: | $1 + 2 x - 4 x^{3} - 5 x^{4} - 12 x^{5} + 54 x^{7} + 81 x^{8}$ |
Frobenius angles: | $\pm0.0988888664344$, $\pm0.455899292071$, $\pm0.765555533101$, $\pm0.877434041262$ |
Angle rank: | $2$ (numerical) |
Number field: | 8.0.56070144.2 |
Galois group: | $D_4\times C_2$ |
Jacobians: | $0$ |
Isomorphism classes: | 42 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $4$ |
Slopes: | $[0, 0, 0, 0, 1, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $117$ | $4329$ | $492804$ | $41251041$ | $2764026837$ |
Point counts of the (virtual) curve
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $6$ | $6$ | $24$ | $78$ | $186$ | $834$ | $2274$ | $6630$ | $19680$ | $59766$ |
Jacobians and polarizations
This isogeny class is principally polarizable, but does not contain a Jacobian.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{3^{3}}$.
Endomorphism algebra over $\F_{3}$The endomorphism algebra of this simple isogeny class is 8.0.56070144.2. |
The base change of $A$ to $\F_{3^{3}}$ is 2.27.ac_bc 2 and its endomorphism algebra is $\mathrm{M}_{2}($4.0.7488.1$)$ |
Base change
This is a primitive isogeny class.