Properties

Label 4.3.ab_g_ah_u
Base field $\F_{3}$
Dimension $4$
$p$-rank $4$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Downloads

Learn more

Invariants

Base field:  $\F_{3}$
Dimension:  $4$
L-polynomial:  $1 - x + 6 x^{2} - 7 x^{3} + 20 x^{4} - 21 x^{5} + 54 x^{6} - 27 x^{7} + 81 x^{8}$
Frobenius angles:  $\pm0.200745078075$, $\pm0.430271667139$, $\pm0.541713501460$, $\pm0.707067623389$
Angle rank:  $4$ (numerical)
Number field:  8.0.4897800252736.1
Galois group:  $C_2 \wr S_4$
Jacobians:  $3$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $4$
Slopes:  $[0, 0, 0, 0, 1, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $106$ $23108$ $473608$ $44090064$ $3765114806$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $3$ $21$ $24$ $85$ $263$ $786$ $2327$ $6381$ $19338$ $58881$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which 0 are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{3}$.

Endomorphism algebra over $\F_{3}$
The endomorphism algebra of this simple isogeny class is 8.0.4897800252736.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
4.3.b_g_h_u$2$(not in LMFDB)