Properties

Label 4.3.a_ai_a_bi
Base field $\F_{3}$
Dimension $4$
$p$-rank $4$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Downloads

Learn more

Invariants

Base field:  $\F_{3}$
Dimension:  $4$
L-polynomial:  $( 1 - 4 x^{2} + 9 x^{4} )^{2}$
  $1 - 8 x^{2} + 34 x^{4} - 72 x^{6} + 81 x^{8}$
Frobenius angles:  $\pm0.133860236401$, $\pm0.133860236401$, $\pm0.866139763599$, $\pm0.866139763599$
Angle rank:  $1$ (numerical)
Jacobians:  $0$
Cyclic group of points:    no
Non-cyclic primes:   $2, 3$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $4$
Slopes:  $[0, 0, 0, 0, 1, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $36$ $1296$ $599076$ $49787136$ $3514829796$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $4$ $-6$ $28$ $90$ $244$ $906$ $2188$ $7194$ $19684$ $59994$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{3^{2}}$.

Endomorphism algebra over $\F_{3}$
The isogeny class factors as 2.3.a_ae 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-2}, \sqrt{-5})\)$)$
Endomorphism algebra over $\overline{\F}_{3}$
The base change of $A$ to $\F_{3^{2}}$ is 1.9.ae 4 and its endomorphism algebra is $\mathrm{M}_{4}($\(\Q(\sqrt{-5}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
4.3.a_e_a_h$3$(not in LMFDB)
4.3.a_a_a_c$4$(not in LMFDB)
4.3.a_i_a_bi$4$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
4.3.a_e_a_h$3$(not in LMFDB)
4.3.a_a_a_c$4$(not in LMFDB)
4.3.a_i_a_bi$4$(not in LMFDB)
4.3.a_e_a_h$6$(not in LMFDB)
4.3.ae_i_au_bu$8$(not in LMFDB)
4.3.ac_ac_c_k$8$(not in LMFDB)
4.3.ac_g_ao_ba$8$(not in LMFDB)
4.3.a_a_a_ac$8$(not in LMFDB)
4.3.c_ac_ac_k$8$(not in LMFDB)
4.3.c_g_o_ba$8$(not in LMFDB)
4.3.e_i_u_bu$8$(not in LMFDB)
4.3.a_ae_a_h$12$(not in LMFDB)
4.3.ac_c_i_ar$24$(not in LMFDB)
4.3.c_c_ai_ar$24$(not in LMFDB)
4.3.ag_n_ak_b$40$(not in LMFDB)
4.3.ae_n_abe_cj$40$(not in LMFDB)
4.3.e_n_be_cj$40$(not in LMFDB)
4.3.g_n_k_b$40$(not in LMFDB)