Invariants
| Base field: | $\F_{3}$ |
| Dimension: | $4$ |
| L-polynomial: | $( 1 - 4 x^{2} + 9 x^{4} )^{2}$ |
| $1 - 8 x^{2} + 34 x^{4} - 72 x^{6} + 81 x^{8}$ | |
| Frobenius angles: | $\pm0.133860236401$, $\pm0.133860236401$, $\pm0.866139763599$, $\pm0.866139763599$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $0$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 3$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $4$ |
| Slopes: | $[0, 0, 0, 0, 1, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $36$ | $1296$ | $599076$ | $49787136$ | $3514829796$ |
Point counts of the (virtual) curve
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $4$ | $-6$ | $28$ | $90$ | $244$ | $906$ | $2188$ | $7194$ | $19684$ | $59994$ |
Jacobians and polarizations
This isogeny class is principally polarizable, but does not contain a Jacobian.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{3^{2}}$.
Endomorphism algebra over $\F_{3}$| The isogeny class factors as 2.3.a_ae 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-2}, \sqrt{-5})\)$)$ |
| The base change of $A$ to $\F_{3^{2}}$ is 1.9.ae 4 and its endomorphism algebra is $\mathrm{M}_{4}($\(\Q(\sqrt{-5}) \)$)$ |
Base change
This is a primitive isogeny class.