Properties

Label 4.3.a_ae_a_h
Base field $\F_{3}$
Dimension $4$
$p$-rank $4$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Downloads

Learn more

Invariants

Base field:  $\F_{3}$
Dimension:  $4$
L-polynomial:  $1 - 4 x^{2} + 7 x^{4} - 36 x^{6} + 81 x^{8}$
Frobenius angles:  $\pm0.0328064302661$, $\pm0.300526903067$, $\pm0.699473096933$, $\pm0.967193569734$
Angle rank:  $1$ (numerical)
Number field:  8.0.3317760000.3
Galois group:  $C_2^3$
Jacobians:  $0$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $4$
Slopes:  $[0, 0, 0, 0, 1, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $49$ $2401$ $470596$ $39955041$ $3500716849$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $4$ $2$ $28$ $78$ $244$ $554$ $2188$ $6246$ $19684$ $59522$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{3^{6}}$.

Endomorphism algebra over $\F_{3}$
The endomorphism algebra of this simple isogeny class is 8.0.3317760000.3.
Endomorphism algebra over $\overline{\F}_{3}$
The base change of $A$ to $\F_{3^{6}}$ is 1.729.abs 4 and its endomorphism algebra is $\mathrm{M}_{4}($\(\Q(\sqrt{-5}) \)$)$
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
4.3.a_i_a_bi$3$(not in LMFDB)
4.3.a_e_a_h$4$(not in LMFDB)
4.3.ac_c_i_ar$8$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
4.3.a_i_a_bi$3$(not in LMFDB)
4.3.a_e_a_h$4$(not in LMFDB)
4.3.ac_c_i_ar$8$(not in LMFDB)
4.3.c_c_ai_ar$8$(not in LMFDB)
4.3.a_ai_a_bi$12$(not in LMFDB)
4.3.a_a_a_c$12$(not in LMFDB)
4.3.a_e_a_h$12$(not in LMFDB)
4.3.ae_i_au_bu$24$(not in LMFDB)
4.3.ac_ac_c_k$24$(not in LMFDB)
4.3.ac_g_ao_ba$24$(not in LMFDB)
4.3.a_a_a_ac$24$(not in LMFDB)
4.3.c_ac_ac_k$24$(not in LMFDB)
4.3.c_g_o_ba$24$(not in LMFDB)
4.3.e_i_u_bu$24$(not in LMFDB)
4.3.ag_n_ak_b$120$(not in LMFDB)
4.3.ae_n_abe_cj$120$(not in LMFDB)
4.3.e_n_be_cj$120$(not in LMFDB)
4.3.g_n_k_b$120$(not in LMFDB)