Invariants
Base field: | $\F_{3}$ |
Dimension: | $4$ |
L-polynomial: | $1 - 4 x^{2} + 7 x^{4} - 36 x^{6} + 81 x^{8}$ |
Frobenius angles: | $\pm0.0328064302661$, $\pm0.300526903067$, $\pm0.699473096933$, $\pm0.967193569734$ |
Angle rank: | $1$ (numerical) |
Number field: | 8.0.3317760000.3 |
Galois group: | $C_2^3$ |
Jacobians: | $0$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $4$ |
Slopes: | $[0, 0, 0, 0, 1, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $49$ | $2401$ | $470596$ | $39955041$ | $3500716849$ |
Point counts of the (virtual) curve
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $4$ | $2$ | $28$ | $78$ | $244$ | $554$ | $2188$ | $6246$ | $19684$ | $59522$ |
Jacobians and polarizations
This isogeny class is principally polarizable, but does not contain a Jacobian.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{3^{6}}$.
Endomorphism algebra over $\F_{3}$The endomorphism algebra of this simple isogeny class is 8.0.3317760000.3. |
The base change of $A$ to $\F_{3^{6}}$ is 1.729.abs 4 and its endomorphism algebra is $\mathrm{M}_{4}($\(\Q(\sqrt{-5}) \)$)$ |
- Endomorphism algebra over $\F_{3^{2}}$
The base change of $A$ to $\F_{3^{2}}$ is 2.9.ae_h 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}, \sqrt{-5})\)$)$ - Endomorphism algebra over $\F_{3^{3}}$
The base change of $A$ to $\F_{3^{3}}$ is 2.27.a_abs 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{2}, \sqrt{-5})\)$)$
Base change
This is a primitive isogeny class.