Invariants
Base field: | $\F_{3}$ |
Dimension: | $4$ |
L-polynomial: | $1 - 3 x^{2} + 16 x^{4} - 27 x^{6} + 81 x^{8}$ |
Frobenius angles: | $\pm0.148854628963$, $\pm0.264917483542$, $\pm0.735082516458$, $\pm0.851145371037$ |
Angle rank: | $2$ (numerical) |
Number field: | 8.0.3613452544.3 |
Galois group: | $D_4\times C_2$ |
Jacobians: | $0$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $4$ |
Slopes: | $[0, 0, 0, 0, 1, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $68$ | $4624$ | $558416$ | $75759616$ | $3500901188$ |
Point counts of the (virtual) curve
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $4$ | $4$ | $28$ | $128$ | $244$ | $802$ | $2188$ | $6528$ | $19684$ | $59524$ |
Jacobians and polarizations
This isogeny class is principally polarizable, but does not contain a Jacobian.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{3^{2}}$.
Endomorphism algebra over $\F_{3}$The endomorphism algebra of this simple isogeny class is 8.0.3613452544.3. |
The base change of $A$ to $\F_{3^{2}}$ is 2.9.ad_q 2 and its endomorphism algebra is $\mathrm{M}_{2}($4.0.3757.1$)$ |
Base change
This is a primitive isogeny class.