Properties

Label 4.3.a_ad_a_q
Base field $\F_{3}$
Dimension $4$
$p$-rank $4$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Downloads

Learn more

Invariants

Base field:  $\F_{3}$
Dimension:  $4$
L-polynomial:  $1 - 3 x^{2} + 16 x^{4} - 27 x^{6} + 81 x^{8}$
Frobenius angles:  $\pm0.148854628963$, $\pm0.264917483542$, $\pm0.735082516458$, $\pm0.851145371037$
Angle rank:  $2$ (numerical)
Number field:  8.0.3613452544.3
Galois group:  $D_4\times C_2$
Jacobians:  $0$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $4$
Slopes:  $[0, 0, 0, 0, 1, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $68$ $4624$ $558416$ $75759616$ $3500901188$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $4$ $4$ $28$ $128$ $244$ $802$ $2188$ $6528$ $19684$ $59524$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{3^{2}}$.

Endomorphism algebra over $\F_{3}$
The endomorphism algebra of this simple isogeny class is 8.0.3613452544.3.
Endomorphism algebra over $\overline{\F}_{3}$
The base change of $A$ to $\F_{3^{2}}$ is 2.9.ad_q 2 and its endomorphism algebra is $\mathrm{M}_{2}($4.0.3757.1$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
4.3.ac_f_ak_bc$4$(not in LMFDB)
4.3.a_d_a_q$4$(not in LMFDB)
4.3.c_f_k_bc$4$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
4.3.ac_f_ak_bc$4$(not in LMFDB)
4.3.a_d_a_q$4$(not in LMFDB)
4.3.c_f_k_bc$4$(not in LMFDB)
4.3.ab_ab_e_ai$12$(not in LMFDB)
4.3.b_ab_ae_ai$12$(not in LMFDB)