Properties

Label 4.3.a_ab_a_i
Base field $\F_{3}$
Dimension $4$
$p$-rank $4$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Downloads

Learn more

Invariants

Base field:  $\F_{3}$
Dimension:  $4$
L-polynomial:  $1 - x^{2} + 8 x^{4} - 9 x^{6} + 81 x^{8}$
Frobenius angles:  $\pm0.144188681100$, $\pm0.324334414339$, $\pm0.675665585661$, $\pm0.855811318900$
Angle rank:  $2$ (numerical)
Number field:  8.0.4521217600.1
Galois group:  $C_2^2 \wr C_2$
Jacobians:  $15$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $4$
Slopes:  $[0, 0, 0, 0, 1, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $80$ $6400$ $527360$ $64000000$ $3512856400$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $4$ $8$ $28$ $112$ $244$ $722$ $2188$ $6944$ $19684$ $59928$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 15 curves (of which 5 are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{3^{2}}$.

Endomorphism algebra over $\F_{3}$
The endomorphism algebra of this simple isogeny class is 8.0.4521217600.1.
Endomorphism algebra over $\overline{\F}_{3}$
The base change of $A$ to $\F_{3^{2}}$ is 2.9.ab_i 2 and its endomorphism algebra is $\mathrm{M}_{2}($4.0.67240.1$)$

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
4.3.a_b_a_i$4$(not in LMFDB)