Invariants
Base field: | $\F_{3}$ |
Dimension: | $4$ |
L-polynomial: | $1 - x^{2} + 8 x^{4} - 9 x^{6} + 81 x^{8}$ |
Frobenius angles: | $\pm0.144188681100$, $\pm0.324334414339$, $\pm0.675665585661$, $\pm0.855811318900$ |
Angle rank: | $2$ (numerical) |
Number field: | 8.0.4521217600.1 |
Galois group: | $C_2^2 \wr C_2$ |
Jacobians: | $15$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $4$ |
Slopes: | $[0, 0, 0, 0, 1, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $80$ | $6400$ | $527360$ | $64000000$ | $3512856400$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $4$ | $8$ | $28$ | $112$ | $244$ | $722$ | $2188$ | $6944$ | $19684$ | $59928$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 15 curves (of which 5 are hyperelliptic):
- $y^2=x^9+2 x^7+2 x^5+2 x^3+2 x$
- $y^2=x^{10}+x^9+2 x^8+2 x^6+x^4+x^2+x+2$
- $y^2=x^{10}+x^9+2 x^8+x^6+x^4+2 x^2+x$
- $y^2=x^9+x^7+2 x^5+x^3+2 x$
- $y^2=x^9+x^8+x^5+2 x^3+2 x^2+2 x$
- $x y+t^2=y^2 z+y z^2-z^3+x^2 t+x z t+y z t+z^2 t=0$
- $x y+t^2=y^2 z-y z^2+z^3+x^2 t+x z t-z^2 t=0$
- $x y+t^2=y^3+x z^2-y z^2+z^3+x^2 t+y^2 t+y z t+z^2 t=0$
- $x y+t^2=y^2 z+x z^2+y z^2+z^3+x^2 t-x y t+x z t+y z t+z^2 t=0$
- $x y+t^2=y^3+x y z+y^2 z+x z^2-y z^2-z^3+x^2 t-y^2 t-x z t+y z t+z^2 t=0$
- $x y+t^2=x^2 z-x y z+y^2 z+y z^2-z^3+y^2 t+y z t=0$
- $x^2+y^2+z t=y^2 z+y z^2+y z t+z^2 t+x t^2-y t^2=0$
- $x^2+y^2+z t=y^3-y z^2-z^3+y^2 t+x z t+z^2 t-y t^2-z t^2=0$
- $x^2+y^2+z t=y^3-y z^2-z^3+y^2 t+x z t+y z t+z^2 t-x t^2=0$
- $x^2+y^2+z t=y^3+y^2 z+y z^2+x z t+z^2 t-x t^2-z t^2+t^3=0$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{3^{2}}$.
Endomorphism algebra over $\F_{3}$The endomorphism algebra of this simple isogeny class is 8.0.4521217600.1. |
The base change of $A$ to $\F_{3^{2}}$ is 2.9.ab_i 2 and its endomorphism algebra is $\mathrm{M}_{2}($4.0.67240.1$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
4.3.a_b_a_i | $4$ | (not in LMFDB) |