Invariants
| Base field: | $\F_{3}$ |
| Dimension: | $4$ |
| L-polynomial: | $( 1 - 2 x + 2 x^{2} - 6 x^{3} + 9 x^{4} )( 1 + 2 x + 2 x^{2} + 6 x^{3} + 9 x^{4} )$ |
| $1 - 2 x^{4} + 81 x^{8}$ | |
| Frobenius angles: | $\pm0.116139763599$, $\pm0.383860236401$, $\pm0.616139763599$, $\pm0.883860236401$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $26$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $4$ |
| Slopes: | $[0, 0, 0, 0, 1, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $80$ | $6400$ | $531920$ | $40960000$ | $3486722000$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $4$ | $10$ | $28$ | $74$ | $244$ | $730$ | $2188$ | $7194$ | $19684$ | $59050$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 26 curves (of which 9 are hyperelliptic):
- $y^2=x^9+2 x^7+2 x^6+x^5+2 x^4+x^3+2 x^2+1$
- $y^2=2 x^9+x^7+x^6+2 x^5+x^4+2 x^3+x^2+2$
- $y^2=x^9+x^7+x^5+x^3+x$
- $y^2=x^{10}+x^9+x^8+x^7+2 x^6+x^5+2 x+2$
- $y^2=x^{10}+2 x^9+x^8+2 x^6+2 x^4+x^2+2 x$
- $y^2=x^9+2 x^7+x^5+2 x^3+x$
- $y^2=x^{10}+x^9+x^8+2 x^7+2 x^6+x^5+x^4+2 x^3+2 x^2+x+2$
- $y^2=x^9+2 x^8+x^6+2 x^5+2 x^4+x^2+x$
- $y^2=x^9+2 x^6+x^5+x^4+x$
- $x y+t^2=y^2 z-y z^2+z^3+x^2 t+x z t+y z t=0$
- $x y+t^2=y^3+y^2 z+y z^2-z^3+x^2 t+y^2 t+x z t+y z t=0$
- $x y+t^2=y^3-y^2 z+y z^2-z^3+x^2 t+x z t-z^2 t=0$
- $x y+t^2=y^2 z+x z^2+z^3+x^2 t=0$
- $x y+t^2=y^3+x z^2-y z^2-z^3+x^2 t+y^2 t+y z t+z^2 t=0$
- $x y+t^2=-y^3+y^2 z+x z^2+y z^2+z^3+x^2 t+z^2 t=0$
- $x y+t^2=-y^3+y^2 z+x z^2-z^3+x^2 t-y^2 t-z^2 t=0$
- $x y+t^2=y^3+y^2 z+x z^2+y z^2-z^3+x^2 t+x z t+z^2 t=0$
- $x y+t^2=y^3-y^2 z+x z^2-y z^2-z^3+x^2 t+y^2 t+x z t+y z t-z^2 t=0$
- $x y+t^2=y^3+x z^2+y z^2-z^3+x^2 t+x y t+y^2 t+y z t=0$
- $x y+t^2=y^3+y^2 z+x z^2+y z^2-z^3+x^2 t+x y t+y^2 t+x z t=0$
- $x y+t^2=x y z+y^2 z+y z^2+z^3+x^2 t+x z t+y z t=0$
- $x y+t^2=-y^3+x y z-y^2 z+x z^2-y z^2-z^3+x^2 t+x y t+y^2 t-x z t-y z t+z^2 t=0$
- $x y+t^2=x y^2+y^2 z+x z^2+z^3+x^2 t-y^2 t-z^2 t=0$
- $x y+t^2=x^2 z-y^2 z+z^3+x y t-y^2 t-z^2 t=0$
- $x t-y z=y^3+x^2 z-z^3+x^2 t-y^2 t+x z t+z^2 t+y t^2-z t^2-t^3=0$
- $x t-y z=x y^2+x^2 z+z^3-x y t+z^2 t+y t^2-z t^2+t^3=0$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{3^{4}}$.
Endomorphism algebra over $\F_{3}$| The isogeny class factors as 2.3.ac_c $\times$ 2.3.c_c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{3^{4}}$ is 1.81.ac 4 and its endomorphism algebra is $\mathrm{M}_{4}($\(\Q(\sqrt{-5}) \)$)$ |
- Endomorphism algebra over $\F_{3^{2}}$
The base change of $A$ to $\F_{3^{2}}$ is 2.9.a_ac 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(i, \sqrt{5})\)$)$
Base change
This is a primitive isogeny class.