Properties

Label 3.5.f_s_bq
Base field $\F_{5}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{5}$
Dimension:  $3$
L-polynomial:  $1 + 5 x + 18 x^{2} + 42 x^{3} + 90 x^{4} + 125 x^{5} + 125 x^{6}$
Frobenius angles:  $\pm0.432924113150$, $\pm0.685621524145$, $\pm0.783031703331$
Angle rank:  $3$ (numerical)
Number field:  6.0.110965156.1
Galois group:  $S_4\times C_2$
Jacobians:  $5$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $406$ $25172$ $1676374$ $262997056$ $28804926976$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $11$ $37$ $107$ $673$ $2946$ $15613$ $79167$ $389985$ $1950839$ $9762672$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 5 curves (of which 2 are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{5}$.

Endomorphism algebra over $\F_{5}$
The endomorphism algebra of this simple isogeny class is 6.0.110965156.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.5.af_s_abq$2$3.25.l_dg_si