# Stored data for abelian variety isogeny class 3.5.f_s_bq, downloaded from the LMFDB on 13 September 2025. {"abvar_count": 406, "abvar_counts": [406, 25172, 1676374, 262997056, 28804926976, 3811615149524, 483231627395846, 59507229805590784, 7441852994437692166, 931040842278969884672], "abvar_counts_str": "406 25172 1676374 262997056 28804926976 3811615149524 483231627395846 59507229805590784 7441852994437692166 931040842278969884672 ", "angle_corank": 0, "angle_rank": 3, "angles": [0.432924113150345, 0.685621524144778, 0.783031703330651], "center_dim": 6, "cohen_macaulay_max": 1, "curve_count": 11, "curve_counts": [11, 37, 107, 673, 2946, 15613, 79167, 389985, 1950839, 9762672], "curve_counts_str": "11 37 107 673 2946 15613 79167 389985 1950839 9762672 ", "curves": ["y^2=x^7+2*x^5+x^4+3*x^3+2*x^2+4*x+1", "y^2=x^7+3*x^5+x^4+2*x^3+3*x^2+1", "x^4+2*x^3*y+x^2*y^2+x^2*y*z+x*y*z^2+x*z^3+y^3*z=0", "x^3*y+4*x^3*z+x^2*y^2+x^2*y*z+x*y*z^2+x*z^3+y^3*z=0", "2*x^4+3*x^3*y+2*x^3*z+x^2*y^2+2*x^2*y*z+x^2*z^2+x*y*z^2+x*z^3+y^3*z=0"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 1, "dim3_factors": 1, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 1, "g": 3, "galois_groups": ["6T11"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 1, "geom_dim3_factors": 1, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 6, "geometric_extension_degree": 1, "geometric_galois_groups": ["6T11"], "geometric_number_fields": ["6.0.110965156.1"], "geometric_splitting_field": "6.0.110965156.1", "geometric_splitting_polynomials": [[62, 18, 37, 0, 8, -1, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 2, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 5, "label": "3.5.f_s_bq", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 4, "newton_elevation": 0, "number_fields": ["6.0.110965156.1"], "p": 5, "p_rank": 3, "p_rank_deficit": 0, "poly": [1, 5, 18, 42, 90, 125, 125], "poly_str": "1 5 18 42 90 125 125 ", "primitive_models": [], "q": 5, "real_poly": [1, 5, 3, -8], "simple_distinct": ["3.5.f_s_bq"], "simple_factors": ["3.5.f_s_bqA"], "simple_multiplicities": [1], "singular_primes": [], "slopes": ["0A", "0B", "0C", "1A", "1B", "1C"], "splitting_field": "6.0.110965156.1", "splitting_polynomials": [[62, 18, 37, 0, 8, -1, 1]], "twist_count": 2, "twists": [["3.5.af_s_abq", "3.25.l_dg_si", 2]], "weak_equivalence_count": 1, "zfv_index": 1, "zfv_index_factorization": [], "zfv_is_bass": true, "zfv_is_maximal": true, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 2116, "zfv_singular_count": 0, "zfv_singular_primes": []}