Properties

Label 3.17.c_d_aci
Base field $\F_{17}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{17}$
Dimension:  $3$
L-polynomial:  $1 + 2 x + 3 x^{2} - 60 x^{3} + 51 x^{4} + 578 x^{5} + 4913 x^{6}$
Frobenius angles:  $\pm0.164018500641$, $\pm0.610127617500$, $\pm0.781533732818$
Angle rank:  $3$ (numerical)
Number field:  6.0.355759744.3
Galois group:  $S_4\times C_2$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $5488$ $24410624$ $114114492016$ $587517241851904$ $2866618962857561968$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $20$ $292$ $4724$ $84220$ $1421940$ $24148132$ $410351892$ $6975888636$ $118588632020$ $2015987617572$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 296 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{17}$.

Endomorphism algebra over $\F_{17}$
The endomorphism algebra of this simple isogeny class is 6.0.355759744.3.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.17.ac_d_ci$2$(not in LMFDB)