-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 5488, 'abvar_counts': [5488, 24410624, 114114492016, 587517241851904, 2866618962857561968, 14069239402016680544768, 69094159653989819081205872, 339455055414582781798361595904, 1667721947186425606182989319910768, 8193440190782160242546512778743376384], 'abvar_counts_str': '5488 24410624 114114492016 587517241851904 2866618962857561968 14069239402016680544768 69094159653989819081205872 339455055414582781798361595904 1667721947186425606182989319910768 8193440190782160242546512778743376384 ', 'angle_corank': 0, 'angle_rank': 3, 'angles': [0.164018500640675, 0.610127617499791, 0.781533732818072], 'center_dim': 6, 'curve_count': 20, 'curve_counts': [20, 292, 4724, 84220, 1421940, 24148132, 410351892, 6975888636, 118588632020, 2015987617572], 'curve_counts_str': '20 292 4724 84220 1421940 24148132 410351892 6975888636 118588632020 2015987617572 ', 'curves': ['y^2=3*x^7+15*x^6+9*x^5+12*x^4+7*x^3+15*x^2+9*x+3', 'y^2=3*x^7+15*x^6+8*x^5+10*x^4+11*x^3+3*x^2+15*x+9', 'y^2=3*x^7+6*x^6+13*x^5+8*x^4+12*x^2+16*x+6', 'y^2=3*x^7+3*x^6+10*x^5+7*x^4+4*x^3+13*x^2+x+8', 'y^2=x^7+3*x^6+16*x^5+3*x^4+6*x^3+8*x^2+6*x+4', 'y^2=3*x^8+9*x^7+16*x^6+10*x^5+4*x^4+10*x^3+x^2+3*x+12', 'y^2=x^8+3*x^7+12*x^6+15*x^5+3*x^4+6*x^3+x^2+12*x+11', 'y^2=x^8+5*x^7+7*x^6+10*x^5+3*x^4+9*x^3+7*x^2+2*x+1', 'y^2=3*x^8+3*x^7+16*x^6+14*x^5+13*x^4+15*x^3+5*x^2+12*x+8', 'y^2=3*x^8+15*x^7+12*x^6+5*x^4+8*x^3+8*x^2+8*x+3', 'y^2=3*x^8+12*x^7+15*x^6+7*x^5+4*x^4+12*x^3+6*x^2+5*x+8', 'y^2=x^8+2*x^7+11*x^6+9*x^5+7*x^4+13*x^3+6*x^2+5*x+4', 'y^2=x^7+5*x^6+13*x^5+15*x^4+14*x^3+5*x^2+10*x', 'y^2=x^8+x^7+8*x^6+14*x^5+x^4+7*x^3+8*x^2+10*x+1', 'y^2=3*x^8+7*x^7+7*x^6+15*x^5+9*x^4+6*x^3+11*x+12', 'y^2=3*x^7+16*x^6+9*x^5+3*x^4+5*x^3+7*x^2+9*x', 'y^2=x^7+11*x^6+12*x^5+16*x^4+3*x^3+4*x^2+16*x+3', 'y^2=x^7+12*x^6+14*x^5+7*x^4+4*x^3+12*x^2+10*x+8', 'y^2=x^8+7*x^7+8*x^6+3*x^5+x^4+5*x^3+11*x^2+x+15', 'y^2=x^8+15*x^7+10*x^6+14*x^5+14*x^4+16*x^3+15*x^2+13*x+5', 'y^2=3*x^8+5*x^7+10*x^6+6*x^4+10*x^3+7*x^2+7*x+10', 'y^2=x^7+3*x^6+14*x^5+8*x^4+11*x+16', 'y^2=x^7+5*x^6+7*x^5+x^4+13*x^3+14*x^2+3*x+15', 'y^2=3*x^8+15*x^6+11*x^5+5*x^4+8*x^3+6*x^2+13', 'y^2=3*x^8+12*x^7+5*x^6+10*x^5+4*x^4+14*x^3+9*x^2+13*x+7', 'y^2=3*x^8+14*x^7+7*x^5+13*x^4+10*x^3+8*x^2+12*x+15', 'y^2=x^8+11*x^7+5*x^6+16*x^5+2*x^4+16*x^3+12*x^2+8*x', 'y^2=3*x^8+9*x^7+11*x^6+10*x^5+15*x^4+16*x^3+2*x+9', 'y^2=x^7+16*x^5+2*x^4+15*x^3+7*x+11', 'y^2=3*x^7+6*x^6+x^5+11*x^4+3*x^3+16*x^2+11*x+13', 'y^2=3*x^7+11*x^5+8*x^4+14*x^2+12*x', 'y^2=x^8+14*x^7+15*x^6+14*x^5+15*x^4+16*x^3+10*x^2+9*x+4', 'y^2=x^8+11*x^7+15*x^6+12*x^5+x^4+8*x^3+9*x^2+9*x+2', 'y^2=x^8+2*x^6+7*x^5+7*x^4+2*x^3+14*x^2+5*x+13', 'y^2=3*x^8+10*x^6+x^5+15*x^3+11*x^2+15*x+7', 'y^2=3*x^8+14*x^7+7*x^6+8*x^5+13*x^4+2*x^3+9*x^2+10*x+11', 'y^2=3*x^7+8*x^6+16*x^5+6*x^4+11*x^3+4*x^2+11*x+1', 'y^2=x^8+13*x^7+12*x^6+12*x^5+x^4+3*x^3+5*x^2+11*x+4', 'y^2=3*x^8+14*x^7+4*x^6+13*x^5+10*x^4+5*x^3+2*x^2+6*x+14', 'y^2=x^8+3*x^7+14*x^6+4*x^5+2*x^4+12*x^3+4*x^2+13*x+2', 'y^2=x^8+12*x^7+15*x^6+15*x^5+5*x^4+10*x^3+9*x^2+9*x+10', 'y^2=3*x^8+13*x^6+6*x^5+16*x^4+7*x^3+3*x+1', 'y^2=x^8+8*x^7+3*x^6+7*x^5+7*x^4+6*x^3+16*x^2+13*x+1', 'y^2=x^8+7*x^7+16*x^6+3*x^5+16*x^4+14*x^3+12*x^2+13*x+5', 'y^2=x^8+4*x^7+4*x^6+x^5+9*x^3+12*x^2+10*x+3', 'y^2=3*x^8+6*x^7+4*x^6+13*x^5+2*x^4+12*x^3+16*x^2+8*x+8', 'y^2=3*x^8+3*x^7+4*x^6+11*x^5+x^4+8*x^3+8*x^2+2*x+16', 'y^2=x^8+6*x^7+6*x^6+2*x^5+5*x^4+9*x^3+10*x^2+11*x+6', 'y^2=x^8+7*x^7+8*x^6+6*x^5+9*x^4+3*x^3+9*x', 'y^2=3*x^8+x^7+3*x^6+11*x^5+9*x^4+16*x^3+8*x^2+10*x+7', 'y^2=3*x^8+15*x^7+15*x^6+13*x^5+10*x^3+7*x^2+6*x+14', 'y^2=x^8+2*x^7+x^6+8*x^5+10*x^4+10*x^3+14*x^2+7*x+15', 'y^2=x^8+3*x^7+10*x^6+12*x^5+12*x^4+15*x^3+8*x^2+2*x+4', 'y^2=x^8+5*x^7+10*x^6+4*x^5+14*x^4+6*x^3+6*x+9', 'y^2=3*x^8+6*x^7+11*x^6+6*x^5+10*x^4+16*x^3+7*x^2+8*x+2', 'y^2=3*x^8+12*x^7+10*x^6+16*x^5+7*x^4+12*x^3+15*x^2+11*x+12', 'y^2=3*x^8+15*x^7+11*x^6+8*x^5+3*x^4+4*x^3+13*x^2+12*x+6', 'y^2=3*x^8+9*x^6+15*x^5+8*x^4+6*x^3+6*x^2+16*x+9', 'y^2=3*x^8+4*x^7+3*x^6+5*x^5+14*x^4+5*x^3+9*x^2+5*x+5', 'y^2=3*x^8+4*x^7+6*x^6+14*x^5+12*x^3+2*x^2+6', 'y^2=3*x^8+4*x^7+13*x^6+5*x^5+11*x^4+9*x^3+7', 'y^2=3*x^8+8*x^7+12*x^6+16*x^5+8*x^4+3*x^3+15*x^2+7*x+12', 'y^2=3*x^8+16*x^7+11*x^6+5*x^5+14*x^4+12*x^3+3*x+15', 'y^2=x^8+13*x^7+8*x^6+2*x^5+12*x^4+3*x^3+x^2+10*x+8', 'y^2=3*x^8+11*x^7+7*x^6+10*x^5+14*x^4+5*x^3+9*x^2+11*x+14', 'y^2=3*x^8+2*x^7+6*x^6+5*x^5+9*x^4+10*x^3+11*x^2+16*x+8', 'y^2=x^8+11*x^7+5*x^6+2*x^5+13*x^4+14*x^2+7*x+12', 'y^2=x^8+12*x^7+6*x^6+10*x^5+5*x^4+6*x^3+14*x^2+x+5', 'y^2=x^8+15*x^7+9*x^6+14*x^5+6*x^4+11*x^3+4*x^2+6*x+8', 'y^2=3*x^8+14*x^7+15*x^6+12*x^5+13*x^4+10*x^3+10*x^2+16*x+16', 'y^2=x^8+11*x^7+9*x^6+9*x^5+7*x^4+2*x^3+x+4', 'y^2=x^7+5*x^6+2*x^5+8*x^4+11*x^3+3*x^2+12*x+1', 'y^2=3*x^7+7*x^6+3*x^5+15*x^4+6*x^3+13*x^2+x+16', 'y^2=3*x^7+16*x^6+10*x^5+9*x^4+7*x^3+12*x^2+10*x+15', 'y^2=x^7+x^6+7*x^5+8*x^4+7*x^3+3*x^2+6*x+9', 'y^2=x^7+12*x^6+5*x^5+15*x^4+5*x^3+10*x^2+11*x+11', 'y^2=3*x^7+9*x^6+16*x^5+16*x^4+15*x^3+14*x^2+11*x+14', 'y^2=x^7+6*x^6+2*x^5+5*x^4+x^3+4*x^2+4*x+5', 'y^2=x^8+2*x^7+6*x^6+7*x^5+2*x^4+3*x^3+12*x^2+16*x+2', 'y^2=3*x^8+2*x^7+4*x^5+14*x^4+9*x^2+11*x+8', 'y^2=3*x^8+5*x^7+3*x^6+3*x^5+12*x^4+2*x^3+7*x^2+8*x+8', 'y^2=3*x^8+15*x^7+6*x^6+15*x^5+15*x^4+4*x^3+6*x^2+14*x+7', 'y^2=3*x^8+12*x^7+x^6+6*x^5+12*x^4+4*x^3+9*x^2+3*x+1', 'y^2=x^8+10*x^7+10*x^6+13*x^5+7*x^4+5*x^3+10', 'y^2=x^8+6*x^7+4*x^6+12*x^4+9*x^3+x^2+16*x+14', 'y^2=x^8+12*x^7+6*x^6+4*x^5+3*x^4+14*x^3+6*x^2+5*x+8', 'y^2=x^8+13*x^7+5*x^6+12*x^4+12*x^3+x^2+6*x+8', 'y^2=3*x^8+5*x^6+10*x^5+12*x^4+x^3+3*x^2+13*x+1', 'y^2=x^8+15*x^7+13*x^5+14*x^4+2*x^3+2*x^2+11', 'y^2=x^8+14*x^7+2*x^6+15*x^5+5*x^4+8*x^3+3*x^2+8*x+8', 'y^2=3*x^8+13*x^7+15*x^6+9*x^5+14*x^4+x^3+9*x^2+3*x+16', 'y^2=3*x^7+7*x^6+11*x^5+4*x^4+3*x^3+4*x^2+7*x+11', 'y^2=3*x^8+13*x^6+12*x^5+6*x^4+x^3+16*x^2+9*x+7', 'y^2=3*x^7+8*x^6+9*x^5+6*x^4+16*x^3+15*x^2+10*x+8', 'y^2=3*x^7+16*x^6+16*x^5+4*x^4+13*x^3+13*x^2+16', 'y^2=x^8+4*x^7+2*x^6+7*x^5+6*x^4+4*x^3+11*x^2+6*x+9', 'y^2=3*x^8+12*x^7+12*x^6+9*x^5+x^4+3*x^3+12*x^2+14', 'y^2=x^7+8*x^6+4*x^5+12*x^4+2*x^3+14*x^2+6*x+8', 'y^2=3*x^8+13*x^7+5*x^6+10*x^5+4*x^4+12*x^3+16*x^2+5*x+16', 'y^2=3*x^8+2*x^7+4*x^6+2*x^5+6*x^4+16*x^3+9*x^2+7*x+14', 'y^2=x^7+10*x^6+8*x^5+8*x^4+x^3+2*x^2+10*x+15', 'y^2=x^8+7*x^7+11*x^6+10*x^5+15*x^4+7*x^3+5*x^2+15*x+11', 'y^2=3*x^8+11*x^7+13*x^6+14*x^5+5*x^4+4*x^3+9*x^2+8*x+2', 'y^2=x^7+16*x^5+4*x^4+15*x^3+6*x^2+3*x+6', 'y^2=x^8+12*x^7+8*x^6+6*x^4+4*x^2+x+11', 'y^2=3*x^8+13*x^7+2*x^6+4*x^5+9*x^4+7*x^3+10*x^2+12*x+8', 'y^2=3*x^8+9*x^7+13*x^6+14*x^4+10*x^3+x^2+15*x+15', 'y^2=x^8+16*x^7+15*x^6+3*x^5+9*x^3+12*x^2+12*x+14', 'y^2=x^8+9*x^7+3*x^6+12*x^5+12*x^4+14*x^3+5*x^2+15*x+11', 'y^2=3*x^8+8*x^7+10*x^6+15*x^5+9*x^4+15*x^3+11*x^2+10*x+1', 'y^2=3*x^8+9*x^7+13*x^6+16*x^5+4*x^4+15*x^3+10*x^2+2*x+12', 'y^2=3*x^8+15*x^7+2*x^5+x^4+9*x^3+7*x^2+3*x+12', 'y^2=x^7+5*x^6+9*x^5+x^4+8*x^3+14*x^2+12*x+9', 'y^2=x^8+2*x^7+4*x^6+16*x^5+15*x^4+13*x^3+14*x^2+10*x', 'y^2=3*x^8+14*x^7+8*x^6+13*x^5+x^4+15*x^3+12*x^2+12*x+1', 'y^2=x^8+x^7+12*x^6+6*x^5+4*x^4+12*x^3+5*x^2+13*x+5', 'y^2=x^8+9*x^7+7*x^6+9*x^5+13*x^4+3*x^3+14*x^2+16*x+3', 'y^2=x^8+8*x^7+8*x^6+9*x^5+15*x^4+11*x^3+12*x+8', 'y^2=x^7+16*x^6+8*x^5+2*x^4+6*x^3+7*x^2+5*x', 'y^2=3*x^8+8*x^7+12*x^6+15*x^5+9*x^4+13*x^3+3*x^2+4*x+13', 'y^2=3*x^7+5*x^6+10*x^5+5*x^4+10*x^3+5*x^2+10*x+4', 'y^2=3*x^8+13*x^7+5*x^6+x^5+13*x^4+x^3+8*x^2+2*x+7', 'y^2=x^8+2*x^7+13*x^6+7*x^5+13*x^4+8*x^3+12*x^2+6*x+12', 'y^2=3*x^8+12*x^7+4*x^6+3*x^5+9*x^4+16*x^3+9*x^2+4*x+2', 'y^2=x^8+7*x^6+14*x^5+11*x^4+x^3+12', 'y^2=x^8+9*x^7+14*x^6+4*x^5+7*x^4+x^3+16*x^2+15*x+7', 'y^2=x^7+12*x^6+13*x^5+13*x^4+x^3+13*x^2+8*x+11', 'y^2=x^7+8*x^6+14*x^5+4*x^4+4*x^3+2*x^2+10*x+14', 'y^2=3*x^8+4*x^7+3*x^6+11*x^4+13*x^3+11*x^2+11*x+1', 'y^2=3*x^8+10*x^7+13*x^5+11*x^4+7*x^3+16*x^2+6*x+10', 'y^2=x^8+8*x^7+7*x^6+5*x^5+13*x^4+9*x^3+16*x^2+9', 'y^2=x^8+12*x^7+16*x^6+2*x^4+7*x^3+12*x^2+9*x+11', 'y^2=3*x^8+15*x^7+6*x^6+12*x^5+11*x^4+15*x^3+5*x^2+6*x+7', 'y^2=x^8+9*x^7+x^6+9*x^5+15*x^4+15*x^3+11*x^2+11*x+11', 'y^2=x^7+4*x^6+4*x^5+2*x^4+2*x^3+4*x^2+4*x+1', 'y^2=x^8+5*x^7+6*x^6+5*x^5+16*x^4+12*x^2+7*x+12', 'y^2=x^8+11*x^7+11*x^6+6*x^5+6*x^4+7*x^3+6*x^2+10*x+13', 'y^2=x^8+13*x^7+9*x^6+10*x^5+x^4+11*x^3+13*x^2+14*x+4', 'y^2=3*x^8+4*x^7+2*x^6+5*x^5+13*x^4+8*x^3+14*x^2+5*x+11', 'y^2=x^7+9*x^6+12*x^5+13*x^4+12*x^3+9*x^2+15*x+1', 'y^2=3*x^8+x^7+8*x^6+x^5+7*x^3+12*x^2+x', 'y^2=3*x^8+5*x^7+2*x^6+5*x^5+x^4+4*x^3+10*x^2+9*x+16', 'y^2=3*x^8+13*x^7+8*x^6+5*x^5+5*x^4+5*x^3+4*x^2+8*x+10', 'y^2=3*x^8+11*x^7+9*x^6+14*x^5+8*x^4+11*x^3+4*x^2+4*x+6', 'y^2=3*x^8+13*x^7+3*x^6+15*x^5+11*x^4+15*x^3+16*x^2+9*x+1', 'y^2=x^8+13*x^7+12*x^6+14*x^5+12*x^4+14*x^3+5*x^2+14*x+9', 'y^2=3*x^8+15*x^7+6*x^6+6*x^4+12*x^3+8*x^2+3*x+9', 'y^2=x^8+11*x^7+9*x^5+16*x^4+5*x^3+3*x^2+8*x+9', 'y^2=3*x^8+4*x^7+x^6+2*x^5+3*x^4+14*x^3+7*x^2+11*x+2', 'y^2=x^8+4*x^7+11*x^6+5*x^5+4*x^4+9*x^2+13*x+8', 'y^2=x^8+15*x^7+3*x^6+x^5+13*x^4+7*x^3+4*x^2+12*x+13', 'y^2=x^8+9*x^7+4*x^6+11*x^5+2*x^4+15*x^3+16*x^2+9', 'y^2=x^8+13*x^7+10*x^6+8*x^5+9*x^4+x^2+10*x+2', 'y^2=x^8+13*x^7+6*x^6+8*x^5+14*x^4+2*x^3+14*x^2+x+7', 'y^2=3*x^8+4*x^7+15*x^6+7*x^5+6*x^4+x^3+7*x+13', 'y^2=x^8+16*x^6+16*x^5+11*x^4+12*x^3+5*x^2+13*x+1', 'y^2=x^8+5*x^7+11*x^6+8*x^5+8*x^4+8*x^3+4*x^2+7*x+5', 'y^2=3*x^8+2*x^7+15*x^6+2*x^5+12*x^4+4*x^3+2*x^2+4*x+4', 'y^2=x^8+10*x^7+8*x^6+12*x^5+8*x^4+7*x^3+14*x^2+13*x+9', 'y^2=3*x^8+8*x^7+8*x^6+10*x^5+9*x^4+13*x^3+5*x^2+14*x+5', 'y^2=x^8+8*x^7+6*x^6+10*x^4+2*x^2+9*x+9', 'y^2=x^8+11*x^7+14*x^6+4*x^5+2*x^4+2*x^3+6*x^2+9*x+7', 'y^2=3*x^8+13*x^7+13*x^6+6*x^5+8*x^4+6*x^3+11*x^2+15*x+1', 'y^2=3*x^8+x^7+6*x^6+8*x^4+10*x^3+4*x^2+14*x+7', 'y^2=x^8+8*x^7+8*x^6+6*x^5+9*x^4+2*x^3+15*x^2+6*x+16', 'y^2=x^8+11*x^7+10*x^6+13*x^5+16*x^4+16*x^3+16*x^2+2*x+11', 'y^2=3*x^8+8*x^7+5*x^6+15*x^5+9*x^4+x^3+5*x^2+10*x+13', 'y^2=3*x^8+13*x^7+7*x^6+16*x^5+14*x^4+10*x^3+10*x^2+11*x+2', 'y^2=x^8+11*x^7+2*x^6+9*x^5+8*x^4+10*x^3+7*x^2+4*x+12', 'y^2=3*x^8+16*x^7+10*x^6+9*x^5+16*x^4+3*x^2+13*x+13', 'y^2=x^8+10*x^7+5*x^6+6*x^5+16*x^4+8*x^3+16*x^2+4*x+4', 'y^2=3*x^8+15*x^7+16*x^6+16*x^5+x^4+6*x^3+15*x^2+7*x+4', 'y^2=3*x^8+15*x^5+7*x^4+8*x^3+3*x^2+7*x+4', 'y^2=x^8+16*x^7+5*x^6+13*x^5+7*x^4+x^3+11*x^2+3*x+2', 'y^2=x^8+6*x^7+x^6+8*x^5+6*x^4+2*x^3+4*x^2+8*x+10', 'y^2=3*x^8+14*x^7+6*x^6+3*x^5+11*x^4+13*x^3+10*x^2+13*x+16', 'y^2=x^8+8*x^7+9*x^6+5*x^5+9*x^4+5*x^3+x^2+16*x+12', 'y^2=3*x^8+6*x^7+x^6+2*x^5+14*x^4+6*x^3+7*x^2+8*x+3', 'y^2=3*x^8+16*x^7+7*x^6+2*x^5+6*x^4+15*x^3+3*x^2+12*x+13', 'y^2=3*x^8+16*x^7+15*x^6+8*x^5+7*x^4+10*x^3+16*x^2+2*x+10', 'y^2=3*x^8+9*x^7+14*x^6+8*x^5+6*x^3+13*x^2+6*x+13', 'y^2=x^8+3*x^7+x^6+15*x^4+2*x^3+6*x^2+2*x+11', 'y^2=3*x^8+15*x^7+10*x^5+12*x^4+12*x^3+9*x^2+10*x+16', 'y^2=3*x^8+2*x^7+4*x^6+4*x^5+7*x^4+14*x^3+x^2+7*x+13', 'y^2=x^8+4*x^7+x^6+10*x^5+6*x^4+2*x^3+6*x^2+8*x+12', 'y^2=3*x^8+5*x^6+9*x^5+11*x^4+7*x^3+16*x^2+14*x+9', 'y^2=x^8+8*x^7+9*x^6+8*x^5+16*x^4+7*x^3+7*x^2+5*x+10', 'y^2=3*x^8+11*x^6+8*x^5+3*x^4+7*x^3+2*x+9', 'y^2=3*x^8+9*x^7+14*x^6+7*x^5+9*x^4+15*x^3+8*x^2+15*x+3', 'y^2=x^8+6*x^7+14*x^6+3*x^4+16*x^3+13*x^2+10*x+16', 'y^2=x^8+6*x^7+5*x^6+16*x^5+14*x^4+8*x^3+3*x^2+12*x+4', 'y^2=3*x^8+3*x^7+10*x^6+2*x^5+3*x^4+12*x^3+8*x^2+15*x+2', 'y^2=3*x^8+12*x^7+13*x^6+13*x^5+8*x^4+8*x^3+16*x^2+14*x+13', 'y^2=x^8+9*x^7+12*x^5+4*x^4+12*x^3+5*x+6', 'y^2=x^8+10*x^6+11*x^5+13*x^4+x^3+16*x^2+10*x+5', 'y^2=3*x^8+10*x^7+5*x^6+12*x^5+7*x^4+14*x^3+14*x^2+2', 'y^2=x^8+8*x^7+x^6+16*x^5+15*x^4+7*x^3+3*x^2+7*x+12', 'y^2=x^8+13*x^7+14*x^6+9*x^5+11*x^4+3*x^3+4*x^2+14*x+2', 'y^2=x^8+16*x^7+12*x^6+2*x^5+4*x^4+x^3+16*x^2+16*x+12', 'y^2=x^8+2*x^7+10*x^6+11*x^4+8*x^3+12*x^2+9*x+10', 'y^2=x^8+2*x^7+11*x^6+13*x^5+15*x^4+12*x^3+7*x^2+16*x+4', 'y^2=3*x^8+2*x^7+12*x^6+13*x^5+5*x^4+x^3+6*x^2+7*x+15', 'y^2=x^8+8*x^7+11*x^6+10*x^5+10*x^4+6*x^3+13*x^2+5', 'y^2=3*x^8+12*x^7+4*x^6+11*x^5+x^4+13*x^3+12*x^2+7*x+4', 'y^2=x^8+15*x^6+14*x^5+6*x^4+2*x^3+7*x^2+5*x+11', 'y^2=x^8+13*x^7+8*x^6+9*x^5+11*x^4+9*x^3+8*x^2+3*x+7', 'y^2=3*x^8+13*x^6+4*x^5+2*x^4+15*x^3+7*x^2+15*x+6', 'y^2=x^8+4*x^7+7*x^6+2*x^4+14*x^3+9*x^2+3*x+12', 'y^2=x^8+10*x^7+3*x^6+9*x^5+9*x^3+7*x^2+10*x+7', 'y^2=x^8+2*x^7+10*x^6+5*x^5+14*x^4+12*x^3+4*x^2+4*x+12', 'y^2=x^8+6*x^6+2*x^5+10*x^3+13*x^2+10*x+8', 'y^2=x^8+2*x^7+9*x^6+13*x^5+x^4+14*x^2+14*x+1', 'y^2=x^8+8*x^7+15*x^6+7*x^5+15*x^4+12*x^3+13*x^2+14*x+13', 'y^2=x^8+11*x^7+8*x^6+14*x^5+2*x^4+12*x^3+4*x^2+5*x+2', 'y^2=3*x^8+9*x^7+5*x^6+7*x^5+13*x^4+15*x^3+16*x^2+16*x+16', 'y^2=3*x^8+4*x^7+16*x^6+9*x^5+15*x^4+11*x^2+14*x+2', 'y^2=x^8+16*x^7+7*x^6+10*x^5+11*x^4+11*x^3+2*x^2+4*x+4', 'y^2=x^8+2*x^7+6*x^6+x^5+7*x^4+14*x^3+7*x^2+11*x+3', 'y^2=x^8+14*x^7+16*x^6+5*x^5+15*x^4+2*x^3+8*x^2+12*x+11', 'y^2=x^8+3*x^7+5*x^6+9*x^5+4*x^4+16*x^3+8*x^2+3*x+11', 'y^2=3*x^8+16*x^7+16*x^6+14*x^5+10*x^4+14*x^2+x+7', 'y^2=x^8+7*x^7+2*x^6+16*x^5+4*x^4+13*x^3+10*x^2+15*x+2', 'y^2=x^8+2*x^7+16*x^6+9*x^5+10*x^4+3*x^3+6*x^2+13', 'y^2=x^8+x^7+3*x^5+15*x^4+7*x^3+3*x^2+6*x+3', 'y^2=3*x^8+15*x^7+10*x^6+16*x^5+9*x^4+13*x^3+5*x^2+14*x+16', 'y^2=3*x^8+14*x^7+13*x^6+5*x^5+2*x^4+15*x^3+7*x^2+x+7', 'y^2=3*x^8+16*x^7+4*x^6+14*x^5+16*x^4+14*x^3+11*x^2+5*x+7', 'y^2=x^8+2*x^7+3*x^6+14*x^5+12*x^4+13*x^3+15*x^2+8*x+9', 'y^2=3*x^8+9*x^7+7*x^6+3*x^5+11*x^4+6*x^2+11*x+3', 'y^2=x^8+8*x^7+14*x^6+x^5+9*x^4+9*x^3+6*x^2+15*x+9', 'y^2=3*x^8+12*x^7+4*x^6+3*x^5+8*x^4+7*x^3+14*x^2+13*x+11', 'y^2=x^8+6*x^7+14*x^6+3*x^5+6*x^4+9*x^3+10*x^2+7*x+4', 'y^2=x^8+15*x^7+14*x^6+7*x^5+10*x^4+8*x^3+9*x^2+15*x+9', 'y^2=3*x^8+x^7+13*x^6+16*x^5+12*x^4+15*x^3+x^2+12*x+14', 'y^2=x^8+3*x^7+14*x^6+12*x^5+11*x^4+2*x^3+13*x^2+5*x+11', 'y^2=x^8+7*x^7+8*x^6+14*x^5+9*x^4+14*x^3+8*x^2+5*x+13', 'y^2=x^8+12*x^7+10*x^6+11*x^5+12*x^4+16*x^3+2*x^2+13*x+1', 'y^2=x^8+6*x^7+9*x^6+13*x^5+4*x^4+7*x^3+5*x^2+11*x+8', 'y^2=3*x^8+5*x^7+5*x^6+14*x^5+2*x^4+15*x^3+16*x+13', 'y^2=x^8+13*x^7+5*x^6+3*x^5+5*x^4+8*x^3+14*x^2+12*x+13', 'y^2=3*x^8+4*x^7+10*x^6+10*x^5+16*x^4+9*x^2+3*x+14', 'y^2=3*x^8+4*x^6+5*x^5+15*x^4+4*x^3+9*x^2+10*x+3', 'y^2=3*x^8+13*x^7+x^6+6*x^5+9*x^4+9*x^3+3*x^2+11*x+5', 'y^2=x^8+13*x^6+4*x^5+5*x^4+8*x^3+10*x^2+16*x+5', 'y^2=x^8+15*x^7+3*x^6+13*x^5+9*x^4+14*x^3+15*x^2+3*x+13', 'y^2=x^8+13*x^6+12*x^5+8*x^4+13*x^3+8*x^2+15*x+4', 'y^2=x^8+12*x^7+9*x^6+2*x^5+11*x^4+x^3+14*x^2+7*x+6', 'y^2=3*x^8+2*x^7+13*x^6+16*x^5+6*x^4+3*x^3+14*x^2+15*x+15', 'y^2=3*x^8+12*x^7+5*x^6+4*x^5+12*x^4+12*x^3+14*x^2+3*x+1', 'y^2=x^8+14*x^7+5*x^6+15*x^5+16*x^4+13*x^3+8*x^2+x+9', 'y^2=x^8+11*x^6+6*x^5+14*x^3+14*x^2+9*x+1', 'y^2=x^8+16*x^7+12*x^5+8*x^4+2*x^3+8*x^2+15*x+8', 'y^2=x^8+14*x^7+6*x^6+10*x^5+6*x^4+11*x^3+6*x^2+7*x+13', 'y^2=x^8+10*x^7+5*x^6+16*x^5+8*x^3+6*x^2+13*x+13', 'y^2=x^8+7*x^7+11*x^6+13*x^5+4*x^4+5*x^3+3*x^2+3*x+12', 'y^2=3*x^8+2*x^7+12*x^6+13*x^5+10*x^4+5*x^3+6*x^2+6*x+10', 'y^2=x^8+5*x^7+11*x^6+8*x^5+8*x^3+7*x^2+2*x+6', 'y^2=x^8+6*x^7+5*x^6+12*x^5+x^4+2*x^3+8*x^2+2*x+3', 'y^2=x^8+13*x^7+16*x^6+15*x^5+12*x^4+10*x^3+14*x^2+15*x+2', 'y^2=x^8+6*x^7+4*x^6+7*x^5+3*x^4+5*x^3+2*x^2+15*x+4', 'y^2=x^8+8*x^7+x^6+4*x^5+7*x^4+5*x^3+8*x^2+13*x+8', 'y^2=3*x^8+x^7+3*x^6+7*x^5+4*x^4+5*x^3+9*x+3', 'y^2=x^8+8*x^7+10*x^6+6*x^5+15*x^4+16*x^3+14*x^2+5*x+13', 'y^2=3*x^8+4*x^7+x^6+x^5+16*x^4+x^3+2*x^2+5*x+13', 'y^2=3*x^8+11*x^7+16*x^6+16*x^5+4*x^4+16*x^3+15*x^2+11*x+8', 'y^2=x^8+5*x^7+13*x^6+16*x^5+6*x^4+x^3+4*x^2+2*x+11', 'y^2=x^8+8*x^6+7*x^5+5*x^4+14*x^3+8*x^2+15*x+6', 'y^2=3*x^8+9*x^7+4*x^6+12*x^5+5*x^4+x^3+13*x^2+2*x+7', 'y^2=x^8+5*x^7+13*x^6+2*x^5+2*x^4+6*x^2+3*x+15', 'y^2=3*x^8+7*x^7+x^6+2*x^5+9*x^4+2*x^3+8*x^2+3*x+9', 'y^2=x^8+5*x^7+3*x^6+5*x^5+5*x^4+7*x^3+15*x^2+4*x+13', 'y^2=3*x^8+4*x^7+10*x^6+4*x^5+10*x^4+10*x^3+11*x^2+3*x+11', 'y^2=3*x^8+11*x^7+7*x^6+12*x^5+12*x^4+14*x^3+8*x^2+10*x+7', 'y^2=3*x^8+6*x^7+9*x^6+x^5+10*x^4+4*x^3+9*x^2+7*x+16', 'y^2=x^8+13*x^7+8*x^6+3*x^5+13*x^4+12*x^3+8*x^2+14*x+14', 'y^2=x^8+4*x^7+2*x^6+x^5+16*x^3+11*x^2+7*x+10', 'y^2=3*x^8+3*x^7+6*x^6+7*x^5+16*x^4+7*x^2+15', 'y^2=x^8+x^7+15*x^6+12*x^5+10*x^4+7*x^3+x^2+5*x+9', 'y^2=3*x^8+16*x^6+15*x^5+12*x^4+10*x^3+12*x^2+14*x+14', 'y^2=x^8+9*x^7+8*x^6+6*x^5+2*x^4+11*x^2+7*x+11', 'y^2=x^8+x^6+15*x^5+3*x^4+9*x^3+5*x^2+12*x+13', 'y^2=3*x^8+9*x^7+5*x^6+11*x^5+15*x^3+6*x^2+3*x+13', 'y^2=x^8+8*x^7+10*x^6+15*x^5+x^4+13*x^3+4*x^2+5*x+3', 'y^2=x^8+4*x^7+3*x^6+6*x^5+2*x^4+10*x^3+10*x^2+1', 'y^2=x^8+8*x^7+15*x^6+6*x^5+14*x^4+2*x^3+11*x^2+2*x+12', 'y^2=3*x^8+3*x^7+2*x^6+6*x^5+5*x^4+x^3+7*x+8', 'y^2=x^8+7*x^7+5*x^6+15*x^5+14*x^4+15*x^2+x+4', 'y^2=3*x^8+11*x^7+15*x^6+10*x^5+10*x^4+14*x^3+11*x^2+6*x+9', 'y^2=x^8+6*x^7+11*x^6+2*x^5+4*x^4+3*x^3+6*x^2+13*x+9', 'y^2=3*x^8+14*x^6+3*x^5+10*x^4+12*x^3+4*x^2+15*x+4', 'y^2=3*x^8+14*x^7+5*x^6+x^5+14*x^4+10*x^3+11*x^2+8*x+9', 'y^2=3*x^8+15*x^7+2*x^6+4*x^5+11*x^4+10*x^3+14*x^2+8*x+8', 'y^2=3*x^8+3*x^7+13*x^6+9*x^5+9*x^4+10*x^3+6*x^2+15*x+5', 'y^2=3*x^8+12*x^7+13*x^6+8*x^5+2*x^4+10*x^3+7*x^2+2*x+9', 'y^2=3*x^8+14*x^7+x^6+16*x^5+11*x^4+3*x^3+3*x^2+7*x+16', 'y^2=x^8+2*x^7+13*x^6+13*x^5+9*x^4+x^3+13*x^2+3*x+16'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 1, 'dim3_factors': 1, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'g': 3, 'galois_groups': ['6T11'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 1, 'geom_dim3_factors': 1, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 6, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['6T11'], 'geometric_number_fields': ['6.0.355759744.3'], 'geometric_splitting_field': '6.0.355759744.3', 'geometric_splitting_polynomials': [[424, 0, 193, 0, 26, 0, 1]], 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 296, 'is_cyclic': False, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'label': '3.17.c_d_aci', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 4, 'newton_elevation': 0, 'noncyclic_primes': [2], 'number_fields': ['6.0.355759744.3'], 'p': 17, 'p_rank': 3, 'p_rank_deficit': 0, 'poly': [1, 2, 3, -60, 51, 578, 4913], 'poly_str': '1 2 3 -60 51 578 4913 ', 'primitive_models': [], 'q': 17, 'real_poly': [1, 2, -48, -128], 'simple_distinct': ['3.17.c_d_aci'], 'simple_factors': ['3.17.c_d_aciA'], 'simple_multiplicities': [1], 'slopes': ['0A', '0B', '0C', '1A', '1B', '1C'], 'splitting_field': '6.0.355759744.3', 'splitting_polynomials': [[424, 0, 193, 0, 26, 0, 1]], 'twist_count': 2, 'twists': [['3.17.ac_d_ci', '3.289.c_nn_ggi', 2]]}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '3.17.c_d_aci', 'extension_degree': 1, 'extension_label': '3.17.c_d_aci', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '6.0.355759744.3', 'center_dim': 6, 'divalg_dim': 1, 'extension_label': '3.17.c_d_aci', 'galois_group': '6T11', 'places': [['1', '5', '1', '1', '0', '0'], ['16', '5', '16', '1', '0', '0']]}