Properties

Label 3.17.ag_bv_aho
Base field $\F_{17}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{17}$
Dimension:  $3$
L-polynomial:  $1 - 6 x + 47 x^{2} - 196 x^{3} + 799 x^{4} - 1734 x^{5} + 4913 x^{6}$
Frobenius angles:  $\pm0.215428991973$, $\pm0.464350214425$, $\pm0.552356873768$
Angle rank:  $3$ (numerical)
Number field:  6.0.40566208.1
Galois group:  $S_4\times C_2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3824$ $29429504$ $119653055600$ $579453278470144$ $2868060228786983024$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $12$ $348$ $4956$ $83068$ $1422652$ $24156636$ $410329260$ $6975503100$ $118587303852$ $2015992415068$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 90 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{17}$.

Endomorphism algebra over $\F_{17}$
The endomorphism algebra of this simple isogeny class is 6.0.40566208.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.17.g_bv_ho$2$(not in LMFDB)