-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 3824, 'abvar_counts': [3824, 29429504, 119653055600, 579453278470144, 2868060228786983024, 14074197367435562489600, 69090348878434146193678064, 339436295016606280122606026752, 1667703268986145874024298870729200, 8193459688885055732294246241152501504], 'abvar_counts_str': '3824 29429504 119653055600 579453278470144 2868060228786983024 14074197367435562489600 69090348878434146193678064 339436295016606280122606026752 1667703268986145874024298870729200 8193459688885055732294246241152501504 ', 'angle_corank': 0, 'angle_rank': 3, 'angles': [0.215428991973125, 0.464350214425193, 0.552356873767877], 'center_dim': 6, 'curve_count': 12, 'curve_counts': [12, 348, 4956, 83068, 1422652, 24156636, 410329260, 6975503100, 118587303852, 2015992415068], 'curve_counts_str': '12 348 4956 83068 1422652 24156636 410329260 6975503100 118587303852 2015992415068 ', 'curves': ['y^2=x^7+8*x^6+4*x^5+9*x^4+4*x^3+2*x^2+8*x+10', 'y^2=3*x^8+9*x^7+15*x^6+8*x^5+8*x^4+11*x^3+3*x^2+2*x+1', 'y^2=3*x^7+9*x^6+4*x^5+16*x^4+5*x^3+10*x^2+12*x+6', 'y^2=3*x^7+15*x^6+5*x^5+12*x^4+8*x^3+x^2+13*x+1', 'y^2=3*x^7+6*x^6+14*x^5+10*x^4+16*x^3+4*x^2+4*x+5', 'y^2=3*x^7+16*x^6+11*x^5+10*x^4+3*x^3+14*x^2+13*x+13', 'y^2=x^7+12*x^6+14*x^5+13*x^4+9*x^3+7*x^2+6*x+12', 'y^2=3*x^8+7*x^7+13*x^6+8*x^5+16*x^4+2*x^3+7*x^2+10*x+13', 'y^2=3*x^7+3*x^6+16*x^5+x^4+15*x^3+8*x^2+9*x+10', 'y^2=x^8+9*x^6+6*x^5+8*x^4+7*x^3+12*x^2+3*x+15', 'y^2=3*x^8+9*x^7+3*x^6+12*x^5+2*x^4+2*x^3+14*x^2+5*x+14', 'y^2=3*x^8+3*x^7+3*x^6+2*x^5+16*x^3+5*x^2+10*x+15', 'y^2=3*x^8+4*x^7+4*x^6+8*x^5+16*x^4+3*x^3+7*x^2+16*x+12', 'y^2=3*x^8+16*x^7+9*x^6+4*x^5+7*x^4+5*x^3+6*x^2+4*x+7', 'y^2=3*x^8+5*x^7+2*x^6+13*x^4+3*x^3+9*x^2+x+3', 'y^2=x^8+14*x^7+3*x^6+13*x^3+8*x^2+14*x+3', 'y^2=x^8+14*x^7+12*x^6+2*x^5+6*x^4+5*x^2+12*x+7', 'y^2=3*x^8+6*x^7+14*x^6+15*x^4+15*x^3+16*x^2+12*x+10', 'y^2=x^8+12*x^7+10*x^6+2*x^5+10*x^4+10*x^3+10*x^2+7*x+3', 'y^2=x^8+12*x^7+14*x^6+12*x^5+11*x^4+6*x^3+13*x^2+9*x+3', 'y^2=3*x^8+3*x^7+12*x^6+13*x^5+7*x^4+11*x^3+7*x^2+9*x+7', 'y^2=3*x^8+x^7+15*x^6+13*x^5+3*x^4+11*x^3+5*x^2+16*x+7', 'y^2=3*x^8+13*x^6+4*x^5+6*x^4+15*x^3+5*x^2+6*x+12', 'y^2=x^7+2*x^6+10*x^5+8*x^4+x^3+4*x^2+9*x+4', 'y^2=x^8+13*x^7+9*x^6+8*x^5+10*x^4+7*x^3+13*x^2+7*x+11', 'y^2=3*x^8+8*x^7+8*x^6+6*x^5+8*x^4+8*x^3+2*x^2+5', 'y^2=x^8+3*x^6+7*x^5+14*x^4+9*x^3+16*x^2+13*x+5', 'y^2=x^7+11*x^6+13*x^5+11*x^4+15*x^3+12*x^2+2*x', 'y^2=3*x^8+15*x^7+11*x^6+7*x^5+16*x^4+2*x^3+2*x^2+8*x+15', 'y^2=3*x^8+10*x^7+10*x^6+10*x^5+9*x^4+10*x^3+3*x^2+x+6', 'y^2=3*x^8+2*x^7+8*x^6+15*x^5+7*x^3+11*x^2+10*x', 'y^2=3*x^8+x^7+12*x^5+8*x^3+14*x^2+3*x+7', 'y^2=3*x^8+3*x^7+11*x^6+11*x^5+2*x^4+16*x^3+2*x^2+4*x+7', 'y^2=3*x^8+13*x^7+14*x^6+13*x^5+9*x^4+7*x^3+10*x^2+16', 'y^2=3*x^8+11*x^7+6*x^6+10*x^4+6*x^3+10*x^2+9*x+12', 'y^2=3*x^8+10*x^7+11*x^6+15*x^5+12*x^4+11*x^3+10*x^2+3*x+6', 'y^2=3*x^8+13*x^7+10*x^6+2*x^5+4*x^4+11*x^3+16*x^2+11*x+1', 'y^2=3*x^8+8*x^7+16*x^6+13*x^5+7*x^4+16*x^3+16*x^2+3', 'y^2=3*x^8+14*x^7+5*x^6+16*x^5+14*x^4+4*x^3+9*x^2+9*x+5', 'y^2=3*x^8+6*x^7+12*x^6+11*x^5+x^4+4*x^3+x^2+5*x+7', 'y^2=x^8+9*x^7+2*x^6+2*x^5+7*x^3+12*x^2+14*x+6', 'y^2=3*x^8+13*x^7+7*x^6+5*x^5+9*x^4+x^3+3*x^2+2*x+15', 'y^2=x^8+6*x^7+7*x^6+4*x^5+x^4+8*x^3+7*x^2+14*x+4', 'y^2=3*x^8+13*x^7+13*x^6+8*x^5+4*x^3+4*x^2+9*x+4', 'y^2=x^8+12*x^7+8*x^6+14*x^4+4*x^3+5*x^2+16*x+3', 'y^2=3*x^8+4*x^7+3*x^6+16*x^5+10*x^4+13*x^3+11*x^2+14*x+16', 'y^2=3*x^8+15*x^7+16*x^6+2*x^5+2*x^4+11*x^3+13*x^2+4*x+7', 'y^2=3*x^8+11*x^7+5*x^6+10*x^5+8*x^4+11*x^3+12*x^2+6*x+5', 'y^2=3*x^8+2*x^7+11*x^6+9*x^5+15*x^4+4*x^3+16*x^2+4*x+6', 'y^2=3*x^8+13*x^7+8*x^6+5*x^5+13*x^4+6*x^3+11*x^2+12*x+2', 'y^2=3*x^8+3*x^7+3*x^6+6*x^5+6*x^4+9*x^3+8*x^2+4*x+14', 'y^2=3*x^8+12*x^7+8*x^6+5*x^5+4*x^4+5*x^3+5*x^2+15*x+5', 'y^2=3*x^8+6*x^7+x^6+2*x^5+3*x^4+10*x^3+3*x^2+x+2', 'y^2=3*x^8+16*x^7+13*x^6+8*x^5+4*x^4+14*x^3+x^2+6*x+13', 'y^2=3*x^8+15*x^7+x^6+14*x^5+4*x^4+8*x^3+6*x^2+8*x+5', 'y^2=3*x^8+5*x^7+2*x^6+2*x^5+7*x^4+11*x^3+14*x^2+3*x+1', 'y^2=3*x^8+12*x^7+2*x^6+8*x^5+x^4+13*x^3+12*x^2+7', 'y^2=3*x^8+12*x^7+7*x^6+15*x^5+7*x^4+11*x^3+13*x^2+3*x+5', 'y^2=x^8+9*x^7+11*x^6+15*x^5+7*x^4+8*x^3+16*x^2+12*x+12', 'y^2=x^8+4*x^7+x^6+9*x^4+10*x^3+13*x^2+4*x+5', 'y^2=3*x^8+3*x^6+2*x^5+7*x^4+4*x^3+2*x^2+3*x+4', 'y^2=3*x^8+2*x^7+2*x^6+12*x^5+12*x^4+13*x^3+x^2+16*x+13', 'y^2=x^8+4*x^7+3*x^6+16*x^5+16*x^4+7*x^3+9*x^2+13*x+14', 'y^2=3*x^8+5*x^7+3*x^6+16*x^5+11*x^4+14*x^3+6*x^2+15*x+16', 'y^2=x^8+3*x^7+10*x^6+8*x^4+2*x^3+15*x^2+14*x+8', 'y^2=3*x^8+13*x^7+12*x^6+12*x^5+11*x^4+15*x^3+14*x^2+4*x+14', 'y^2=x^8+8*x^6+12*x^5+6*x^3+16*x^2+16*x+16', 'y^2=3*x^8+6*x^7+12*x^6+4*x^5+2*x^4+5*x^3+8*x^2+4*x+5', 'y^2=x^8+13*x^7+13*x^5+16*x^3+9*x^2+14*x+10', 'y^2=3*x^8+14*x^7+10*x^6+5*x^5+2*x^4+8*x^3+12*x^2+7*x+12', 'y^2=x^8+13*x^7+14*x^6+9*x^5+5*x^4+9*x^3+14*x^2+x+5', 'y^2=x^8+15*x^7+6*x^6+2*x^5+13*x^3+2*x^2+12*x+5', 'y^2=x^8+x^7+14*x^5+3*x^3+4*x^2+14*x+5', 'y^2=3*x^8+11*x^7+11*x^6+16*x^5+5*x^4+4*x^3+14*x^2+5*x+2', 'y^2=3*x^8+9*x^7+5*x^6+13*x^5+13*x^4+10*x^2+5*x+11', 'y^2=3*x^8+8*x^6+8*x^5+2*x^4+10*x^3+x^2+3*x+11', 'y^2=3*x^8+12*x^7+3*x^6+5*x^5+12*x^4+6*x^3+3*x^2+14', 'y^2=3*x^8+11*x^7+13*x^6+5*x^5+9*x^4+15*x^3+4*x^2+6*x+15', 'y^2=x^8+12*x^7+13*x^6+8*x^5+12*x^4+11*x^3+3*x^2+11*x+7', 'y^2=x^8+3*x^7+8*x^6+7*x^5+12*x^4+8*x^3+5*x^2+x+15', 'y^2=3*x^8+6*x^7+9*x^6+2*x^5+16*x^4+14*x^2+9*x+16', 'y^2=3*x^8+4*x^7+12*x^6+15*x^5+3*x^4+6*x^3+10*x^2+16*x+10', 'y^2=x^8+16*x^7+15*x^6+14*x^5+4*x^4+7*x^3+x^2+3*x+14', 'y^2=x^8+12*x^7+15*x^6+9*x^5+4*x^4+6*x^3+3*x^2+9*x+7', 'y^2=3*x^8+11*x^7+4*x^6+2*x^5+13*x^4+10*x^3+x^2+12*x+11', 'y^2=3*x^8+16*x^7+15*x^6+4*x^5+8*x^4+x^3+15*x^2+14*x+12', 'y^2=x^8+10*x^7+2*x^6+14*x^5+2*x^4+10*x^3+x^2+1', 'y^2=x^8+12*x^6+11*x^5+8*x^4+5*x^3+4*x^2+15*x+13', 'y^2=3*x^8+13*x^7+x^6+12*x^5+11*x^4+2*x^3+8*x^2+10*x+3', 'y^2=3*x^8+12*x^7+16*x^6+5*x^5+15*x^4+9*x^3+3*x^2+14*x+5'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 1, 'dim3_factors': 1, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'g': 3, 'galois_groups': ['6T11'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 1, 'geom_dim3_factors': 1, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 6, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['6T11'], 'geometric_number_fields': ['6.0.40566208.1'], 'geometric_splitting_field': '6.0.40566208.1', 'geometric_splitting_polynomials': [[46, -26, 42, -12, 10, -2, 1]], 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 90, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'label': '3.17.ag_bv_aho', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 4, 'newton_elevation': 0, 'number_fields': ['6.0.40566208.1'], 'p': 17, 'p_rank': 3, 'p_rank_deficit': 0, 'poly': [1, -6, 47, -196, 799, -1734, 4913], 'poly_str': '1 -6 47 -196 799 -1734 4913 ', 'primitive_models': [], 'q': 17, 'real_poly': [1, -6, -4, 8], 'simple_distinct': ['3.17.ag_bv_aho'], 'simple_factors': ['3.17.ag_bv_ahoA'], 'simple_multiplicities': [1], 'slopes': ['0A', '0B', '0C', '1A', '1B', '1C'], 'splitting_field': '6.0.40566208.1', 'splitting_polynomials': [[46, -26, 42, -12, 10, -2, 1]], 'twist_count': 2, 'twists': [['3.17.g_bv_ho', '3.289.cg_cdz_bmau', 2]]}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '3.17.ag_bv_aho', 'extension_degree': 1, 'extension_label': '3.17.ag_bv_aho', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0', '0', '0'], 'center': '6.0.40566208.1', 'center_dim': 6, 'divalg_dim': 1, 'extension_label': '3.17.ag_bv_aho', 'galois_group': '6T11', 'places': [['13', '1', '0', '0', '0', '0'], ['11', '10', '1', '0', '0', '0'], ['11', '1', '0', '0', '0', '0'], ['7', '15', '1', '0', '0', '0']]}