Invariants
This isogeny class is simple and geometrically simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$A(\F_{q^r})$ |
$3856$ |
$29552384$ |
$121932924304$ |
$584823238672384$ |
$2864506228642108816$ |
Point counts of the curve
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
$C(\F_{q^r})$ |
$12$ |
$348$ |
$5052$ |
$83836$ |
$1420892$ |
$24124380$ |
$410282220$ |
$6975911676$ |
$118588332396$ |
$2015990917468$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 100 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:
- $y^2=x^7+6 x^6+5 x^5+9 x^4+2 x^3+14 x^2+7 x+6$
- $y^2=x^8+2 x^7+3 x^6+6 x^5+11 x^4+6 x^3+2 x^2+12 x+4$
- $y^2=x^8+x^7+3 x^6+13 x^5+10 x^4+15 x^3+11 x^2+11 x+12$
- $y^2=3 x^7+8 x^6+2 x^5+11 x^4+x^3+4 x^2+x+14$
- $y^2=3 x^7+7 x^6+4 x^5+3 x^4+x^3+x^2+9 x+12$
- $y^2=3 x^8+15 x^6+13 x^5+9 x^3+11 x+3$
- $y^2=x^8+x^7+4 x^6+6 x^5+8 x^4+15 x^3+6 x^2+2 x+11$
- $y^2=3 x^8+14 x^7+15 x^6+5 x^5+9 x^4+7 x^3+9 x^2+2$
- $y^2=3 x^7+5 x^6+10 x^5+x^4+5 x^2+10 x+6$
- $y^2=3 x^8+12 x^7+2 x^6+14 x^5+9 x^4+9 x^3+3 x^2+8 x+16$
- $y^2=3 x^8+16 x^7+7 x^6+7 x^5+15 x^4+6 x+14$
- $y^2=3 x^8+9 x^7+6 x^6+3 x^5+10 x^4+5 x^3+4 x^2+8 x+4$
- $y^2=x^8+7 x^7+14 x^6+7 x^5+11 x^4+5 x^3+6 x^2+8 x+14$
- $y^2=3 x^8+7 x^7+12 x^6+x^5+12 x^4+15 x^3+8 x^2+7 x+11$
- $y^2=x^8+7 x^7+7 x^6+9 x^5+8 x^4+8 x^3+12 x^2+9 x+2$
- $y^2=3 x^8+11 x^7+9 x^6+9 x^5+9 x^4+11 x^3+9 x^2+16 x+15$
- $y^2=3 x^8+8 x^7+9 x^6+3 x^5+6 x^4+2 x^3+12 x^2+3 x+16$
- $y^2=3 x^8+16 x^7+5 x^6+16 x^5+9 x^4+15 x^3+10 x^2+15 x+6$
- $y^2=x^8+15 x^7+13 x^6+15 x^5+11 x^4+7 x^2+8 x+9$
- $y^2=x^8+2 x^7+14 x^6+4 x^5+3 x^4+13 x^3+x^2+7 x+1$
- and 80 more
- $y^2=3 x^7+14 x^6+4 x^5+16 x^4+15 x^3+7 x^2+2 x+7$
- $y^2=3 x^7+2 x^6+x^5+15 x^4+x^3+6 x^2+6 x+5$
- $y^2=3 x^7+10 x^6+8 x^5+2 x^4+15 x^3+7 x^2+13 x+3$
- $y^2=x^7+15 x^6+3 x^5+9 x^4+8 x^3+5 x^2+6 x+11$
- $y^2=x^8+10 x^7+8 x^6+16 x^5+3 x^4+10 x^3+x^2+5 x+11$
- $y^2=3 x^8+4 x^7+16 x^6+3 x^5+6 x^4+13 x^3+16 x^2+x+12$
- $y^2=x^8+13 x^7+3 x^6+9 x^5+x^4+6 x^3+12 x^2+2 x+6$
- $y^2=3 x^8+13 x^7+4 x^6+8 x^5+8 x^4+7 x^3+11 x^2+12 x+5$
- $y^2=3 x^8+7 x^7+10 x^6+8 x^5+5 x^4+9 x^3+15 x^2+3 x$
- $y^2=3 x^7+10 x^6+9 x^5+x^4+8 x^3+15 x^2+15 x$
- $y^2=3 x^8+3 x^7+7 x^6+2 x^5+6 x^4+x^3+13 x^2+5 x+9$
- $y^2=3 x^8+6 x^7+14 x^6+2 x^5+4 x^4+11 x^3+16 x^2+11 x+6$
- $y^2=3 x^8+7 x^7+11 x^6+7 x^5+11 x^4+16 x^3+9 x^2+14 x+10$
- $y^2=3 x^8+11 x^7+13 x^6+9 x^5+3 x^4+8 x^3+3 x+7$
- $y^2=3 x^8+x^7+15 x^6+2 x^5+8 x^4+x^3+12 x^2+16 x+6$
- $y^2=3 x^8+10 x^7+10 x^6+15 x^5+3 x^4+7 x^3+6 x^2+3 x+1$
- $y^2=3 x^8+9 x^7+6 x^6+8 x^5+7 x^4+11 x^3+10 x^2+14 x+5$
- $y^2=3 x^8+2 x^7+12 x^5+13 x^4+11 x^3+x^2+3 x$
- $y^2=x^8+14 x^7+4 x^6+4 x^5+3 x^4+15 x^3+13 x^2+12 x+2$
- $y^2=3 x^8+7 x^7+10 x^6+x^5+10 x^4+3 x^3+9 x^2+5 x+10$
- $y^2=3 x^8+2 x^7+2 x^6+2 x^5+15 x^4+8 x^3+10 x^2+11 x+4$
- $y^2=3 x^8+3 x^7+16 x^5+9 x^4+16 x^3+5 x^2+14 x+8$
- $y^2=x^8+3 x^7+14 x^6+x^5+6 x^4+6 x^3+x^2+9 x+9$
- $y^2=x^8+16 x^7+8 x^6+5 x^5+7 x^4+4 x^2+10 x+10$
- $y^2=x^8+9 x^7+2 x^5+8 x^4+5 x^3+7 x^2+8 x+5$
- $y^2=3 x^8+10 x^6+15 x^5+8 x^4+4 x^3+8 x^2+14 x+16$
- $y^2=3 x^8+13 x^7+4 x^6+8 x^5+3 x^3+16 x^2+8 x+7$
- $y^2=3 x^8+8 x^7+5 x^6+13 x^5+16 x^3+8 x^2+13 x+9$
- $y^2=x^8+11 x^7+5 x^6+2 x^5+8 x^4+12 x^3+2 x+16$
- $y^2=x^8+2 x^7+13 x^6+6 x^5+15 x^4+13 x^3+11 x^2+13 x+12$
- $y^2=x^8+9 x^7+11 x^6+7 x^5+8 x^4+11 x^3+9 x^2+2 x+7$
- $y^2=3 x^8+8 x^7+3 x^6+7 x^5+x^4+15 x^3+15 x^2+11 x+3$
- $y^2=3 x^8+15 x^7+9 x^6+5 x^5+16 x^3+11 x^2+9 x+11$
- $y^2=3 x^8+4 x^7+x^4+x^2+8 x+5$
- $y^2=x^8+8 x^7+6 x^6+4 x^5+x^4+3 x^2+7 x+9$
- $y^2=3 x^8+14 x^7+15 x^6+6 x^5+10 x^4+x^3+12 x^2+13 x+5$
- $y^2=3 x^8+14 x^7+16 x^6+11 x^5+12 x^4+13 x^3+x^2+10 x+4$
- $y^2=x^8+7 x^7+15 x^6+4 x^5+6 x^4+x^3+6 x^2+10 x+15$
- $y^2=3 x^8+16 x^7+9 x^6+7 x^5+8 x^4+11 x^3+13 x^2+13$
- $y^2=3 x^8+4 x^7+12 x^6+13 x^5+9 x^4+9 x^3+4 x^2+14 x+3$
- $y^2=3 x^8+10 x^7+8 x^6+7 x^5+4 x^4+10 x^3+3 x^2+16 x+10$
- $y^2=3 x^8+12 x^7+7 x^6+11 x^5+12 x^4+12 x^3+14 x^2+10 x+7$
- $y^2=3 x^8+5 x^7+11 x^6+5 x^5+15 x^4+8 x^3+15 x^2+3 x+7$
- $y^2=x^8+9 x^7+3 x^6+5 x^4+16 x^3+15 x^2+8 x+6$
- $y^2=3 x^8+2 x^7+16 x^6+11 x^5+14 x^4+9 x^3+5 x^2+12 x+8$
- $y^2=3 x^8+15 x^7+14 x^6+3 x^5+11 x^4+10 x^3+x^2+6 x+15$
- $y^2=3 x^8+3 x^7+3 x^6+9 x^5+15 x^4+12 x^3+15 x^2+14 x+8$
- $y^2=x^8+11 x^7+9 x^6+12 x^5+10 x^4+7 x^3+15 x^2+10 x+7$
- $y^2=3 x^8+2 x^7+9 x^6+4 x^5+10 x^4+12 x^3+11 x^2+16 x+4$
- $y^2=x^8+11 x^7+4 x^6+3 x^5+10 x^4+x^3+5 x^2+6 x+4$
- $y^2=3 x^8+16 x^7+13 x^6+2 x^5+16 x^4+5 x^3+3 x^2+15 x+16$
- $y^2=3 x^8+7 x^7+3 x^6+7 x^5+10 x^4+10 x^3+15 x^2+14 x+12$
- $y^2=3 x^8+7 x^7+2 x^6+9 x^5+15 x^4+4 x^3+11 x^2+11 x+3$
- $y^2=3 x^8+5 x^7+3 x^6+2 x^5+6 x^4+3 x^3+2 x^2+8 x+12$
- $y^2=3 x^8+5 x^7+11 x^6+13 x^5+8 x^4+16 x^3+7 x^2+15 x+16$
- $y^2=3 x^8+2 x^7+10 x^6+14 x^5+12 x^4+13 x^3+15 x^2+8 x+10$
- $y^2=3 x^8+4 x^7+10 x^5+15 x^4+15 x^3+9 x^2+15 x+11$
- $y^2=x^8+x^7+7 x^6+10 x^5+7 x^4+16 x^3+11 x^2+10 x+12$
- $y^2=3 x^8+7 x^7+12 x^6+4 x^5+8 x^4+10 x^3+13 x^2+4 x+10$
- $y^2=x^8+4 x^7+12 x^6+8 x^5+14 x^4+10 x^3+6 x^2+11 x+3$
- $y^2=3 x^8+9 x^6+2 x^5+10 x^4+4 x^3+2 x^2+x+8$
- $y^2=x^8+10 x^7+14 x^6+4 x^5+9 x^4+3 x^3+x^2+16 x+5$
- $y^2=3 x^8+8 x^7+7 x^6+5 x^5+3 x^4+7 x^3+11 x^2+16 x+1$
- $y^2=3 x^8+5 x^7+6 x^6+7 x^5+10 x^4+10 x^3+12 x^2+16 x+14$
- $y^2=3 x^8+4 x^7+10 x^6+6 x^5+9 x^4+5 x^2+2 x+8$
- $y^2=x^8+4 x^7+2 x^6+14 x^5+11 x^4+11 x^3+7 x^2+3$
- $y^2=3 x^8+9 x^7+14 x^6+2 x^5+16 x^3+3 x^2+7 x+15$
- $y^2=3 x^8+x^7+6 x^6+10 x^5+11 x^4+5 x^3+5 x^2+7 x+13$
- $y^2=x^8+9 x^7+12 x^6+7 x^5+16 x^4+10 x^3+5 x^2+8 x+5$
- $y^2=3 x^8+8 x^7+9 x^6+10 x^5+5 x^4+x^3+9 x^2+16 x+14$
- $y^2=3 x^8+6 x^6+4 x^5+12 x^4+6 x^3+16 x^2+11 x+3$
- $y^2=3 x^8+16 x^7+8 x^5+13 x^4+6 x^3+9 x^2+5 x+16$
- $y^2=x^8+14 x^7+2 x^6+14 x^5+14 x^4+15 x^3+15 x^2+7 x+10$
- $y^2=3 x^8+12 x^6+13 x^5+12 x^4+6 x^3+5 x^2+4 x+1$
- $y^2=3 x^8+11 x^7+7 x^6+9 x^5+11 x^4+6 x^3+16 x^2+13 x+3$
- $y^2=x^8+13 x^6+16 x^5+12 x^4+11 x^3+6 x^2+9 x+6$
- $y^2=3 x^8+2 x^7+8 x^6+14 x^5+8 x^4+13 x^3+14 x^2+3 x+7$
- $y^2=3 x^8+6 x^7+14 x^6+16 x^5+7 x^4+11 x^3+7 x^2+6 x+2$
- $y^2=x^8+2 x^7+10 x^6+15 x^5+10 x^4+7 x^3+3 x^2+7 x+6$
- $y^2=3 x^8+2 x^7+16 x^6+8 x^5+12 x^4+5 x^3+7 x^2+14 x+14$
All geometric endomorphisms are defined over $\F_{17}$.
Endomorphism algebra over $\F_{17}$
The endomorphism algebra of this simple isogeny class is 6.0.12244336.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
3.17.g_bv_gi | $2$ | (not in LMFDB) |