-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 3856, 'abvar_counts': [3856, 29552384, 121932924304, 584823238672384, 2864506228642108816, 14055402697775710107392, 69082428830489448530412304, 339456176541964253794376089600, 1667717733547309587933443067985936, 8193453602289842193508431497977620224], 'abvar_counts_str': '3856 29552384 121932924304 584823238672384 2864506228642108816 14055402697775710107392 69082428830489448530412304 339456176541964253794376089600 1667717733547309587933443067985936 8193453602289842193508431497977620224 ', 'angle_corank': 0, 'angle_rank': 3, 'angles': [0.275265096569198, 0.378223423288786, 0.595158359869479], 'center_dim': 6, 'curve_count': 12, 'curve_counts': [12, 348, 5052, 83836, 1420892, 24124380, 410282220, 6975911676, 118588332396, 2015990917468], 'curve_counts_str': '12 348 5052 83836 1420892 24124380 410282220 6975911676 118588332396 2015990917468 ', 'curves': ['y^2=x^7+6*x^6+5*x^5+9*x^4+2*x^3+14*x^2+7*x+6', 'y^2=x^8+2*x^7+3*x^6+6*x^5+11*x^4+6*x^3+2*x^2+12*x+4', 'y^2=x^8+x^7+3*x^6+13*x^5+10*x^4+15*x^3+11*x^2+11*x+12', 'y^2=3*x^7+8*x^6+2*x^5+11*x^4+x^3+4*x^2+x+14', 'y^2=3*x^7+7*x^6+4*x^5+3*x^4+x^3+x^2+9*x+12', 'y^2=3*x^8+15*x^6+13*x^5+9*x^3+11*x+3', 'y^2=x^8+x^7+4*x^6+6*x^5+8*x^4+15*x^3+6*x^2+2*x+11', 'y^2=3*x^8+14*x^7+15*x^6+5*x^5+9*x^4+7*x^3+9*x^2+2', 'y^2=3*x^7+5*x^6+10*x^5+x^4+5*x^2+10*x+6', 'y^2=3*x^8+12*x^7+2*x^6+14*x^5+9*x^4+9*x^3+3*x^2+8*x+16', 'y^2=3*x^8+16*x^7+7*x^6+7*x^5+15*x^4+6*x+14', 'y^2=3*x^8+9*x^7+6*x^6+3*x^5+10*x^4+5*x^3+4*x^2+8*x+4', 'y^2=x^8+7*x^7+14*x^6+7*x^5+11*x^4+5*x^3+6*x^2+8*x+14', 'y^2=3*x^8+7*x^7+12*x^6+x^5+12*x^4+15*x^3+8*x^2+7*x+11', 'y^2=x^8+7*x^7+7*x^6+9*x^5+8*x^4+8*x^3+12*x^2+9*x+2', 'y^2=3*x^8+11*x^7+9*x^6+9*x^5+9*x^4+11*x^3+9*x^2+16*x+15', 'y^2=3*x^8+8*x^7+9*x^6+3*x^5+6*x^4+2*x^3+12*x^2+3*x+16', 'y^2=3*x^8+16*x^7+5*x^6+16*x^5+9*x^4+15*x^3+10*x^2+15*x+6', 'y^2=x^8+15*x^7+13*x^6+15*x^5+11*x^4+7*x^2+8*x+9', 'y^2=x^8+2*x^7+14*x^6+4*x^5+3*x^4+13*x^3+x^2+7*x+1', 'y^2=3*x^7+14*x^6+4*x^5+16*x^4+15*x^3+7*x^2+2*x+7', 'y^2=3*x^7+2*x^6+x^5+15*x^4+x^3+6*x^2+6*x+5', 'y^2=3*x^7+10*x^6+8*x^5+2*x^4+15*x^3+7*x^2+13*x+3', 'y^2=x^7+15*x^6+3*x^5+9*x^4+8*x^3+5*x^2+6*x+11', 'y^2=x^8+10*x^7+8*x^6+16*x^5+3*x^4+10*x^3+x^2+5*x+11', 'y^2=3*x^8+4*x^7+16*x^6+3*x^5+6*x^4+13*x^3+16*x^2+x+12', 'y^2=x^8+13*x^7+3*x^6+9*x^5+x^4+6*x^3+12*x^2+2*x+6', 'y^2=3*x^8+13*x^7+4*x^6+8*x^5+8*x^4+7*x^3+11*x^2+12*x+5', 'y^2=3*x^8+7*x^7+10*x^6+8*x^5+5*x^4+9*x^3+15*x^2+3*x', 'y^2=3*x^7+10*x^6+9*x^5+x^4+8*x^3+15*x^2+15*x', 'y^2=3*x^8+3*x^7+7*x^6+2*x^5+6*x^4+x^3+13*x^2+5*x+9', 'y^2=3*x^8+6*x^7+14*x^6+2*x^5+4*x^4+11*x^3+16*x^2+11*x+6', 'y^2=3*x^8+7*x^7+11*x^6+7*x^5+11*x^4+16*x^3+9*x^2+14*x+10', 'y^2=3*x^8+11*x^7+13*x^6+9*x^5+3*x^4+8*x^3+3*x+7', 'y^2=3*x^8+x^7+15*x^6+2*x^5+8*x^4+x^3+12*x^2+16*x+6', 'y^2=3*x^8+10*x^7+10*x^6+15*x^5+3*x^4+7*x^3+6*x^2+3*x+1', 'y^2=3*x^8+9*x^7+6*x^6+8*x^5+7*x^4+11*x^3+10*x^2+14*x+5', 'y^2=3*x^8+2*x^7+12*x^5+13*x^4+11*x^3+x^2+3*x', 'y^2=x^8+14*x^7+4*x^6+4*x^5+3*x^4+15*x^3+13*x^2+12*x+2', 'y^2=3*x^8+7*x^7+10*x^6+x^5+10*x^4+3*x^3+9*x^2+5*x+10', 'y^2=3*x^8+2*x^7+2*x^6+2*x^5+15*x^4+8*x^3+10*x^2+11*x+4', 'y^2=3*x^8+3*x^7+16*x^5+9*x^4+16*x^3+5*x^2+14*x+8', 'y^2=x^8+3*x^7+14*x^6+x^5+6*x^4+6*x^3+x^2+9*x+9', 'y^2=x^8+16*x^7+8*x^6+5*x^5+7*x^4+4*x^2+10*x+10', 'y^2=x^8+9*x^7+2*x^5+8*x^4+5*x^3+7*x^2+8*x+5', 'y^2=3*x^8+10*x^6+15*x^5+8*x^4+4*x^3+8*x^2+14*x+16', 'y^2=3*x^8+13*x^7+4*x^6+8*x^5+3*x^3+16*x^2+8*x+7', 'y^2=3*x^8+8*x^7+5*x^6+13*x^5+16*x^3+8*x^2+13*x+9', 'y^2=x^8+11*x^7+5*x^6+2*x^5+8*x^4+12*x^3+2*x+16', 'y^2=x^8+2*x^7+13*x^6+6*x^5+15*x^4+13*x^3+11*x^2+13*x+12', 'y^2=x^8+9*x^7+11*x^6+7*x^5+8*x^4+11*x^3+9*x^2+2*x+7', 'y^2=3*x^8+8*x^7+3*x^6+7*x^5+x^4+15*x^3+15*x^2+11*x+3', 'y^2=3*x^8+15*x^7+9*x^6+5*x^5+16*x^3+11*x^2+9*x+11', 'y^2=3*x^8+4*x^7+x^4+x^2+8*x+5', 'y^2=x^8+8*x^7+6*x^6+4*x^5+x^4+3*x^2+7*x+9', 'y^2=3*x^8+14*x^7+15*x^6+6*x^5+10*x^4+x^3+12*x^2+13*x+5', 'y^2=3*x^8+14*x^7+16*x^6+11*x^5+12*x^4+13*x^3+x^2+10*x+4', 'y^2=x^8+7*x^7+15*x^6+4*x^5+6*x^4+x^3+6*x^2+10*x+15', 'y^2=3*x^8+16*x^7+9*x^6+7*x^5+8*x^4+11*x^3+13*x^2+13', 'y^2=3*x^8+4*x^7+12*x^6+13*x^5+9*x^4+9*x^3+4*x^2+14*x+3', 'y^2=3*x^8+10*x^7+8*x^6+7*x^5+4*x^4+10*x^3+3*x^2+16*x+10', 'y^2=3*x^8+12*x^7+7*x^6+11*x^5+12*x^4+12*x^3+14*x^2+10*x+7', 'y^2=3*x^8+5*x^7+11*x^6+5*x^5+15*x^4+8*x^3+15*x^2+3*x+7', 'y^2=x^8+9*x^7+3*x^6+5*x^4+16*x^3+15*x^2+8*x+6', 'y^2=3*x^8+2*x^7+16*x^6+11*x^5+14*x^4+9*x^3+5*x^2+12*x+8', 'y^2=3*x^8+15*x^7+14*x^6+3*x^5+11*x^4+10*x^3+x^2+6*x+15', 'y^2=3*x^8+3*x^7+3*x^6+9*x^5+15*x^4+12*x^3+15*x^2+14*x+8', 'y^2=x^8+11*x^7+9*x^6+12*x^5+10*x^4+7*x^3+15*x^2+10*x+7', 'y^2=3*x^8+2*x^7+9*x^6+4*x^5+10*x^4+12*x^3+11*x^2+16*x+4', 'y^2=x^8+11*x^7+4*x^6+3*x^5+10*x^4+x^3+5*x^2+6*x+4', 'y^2=3*x^8+16*x^7+13*x^6+2*x^5+16*x^4+5*x^3+3*x^2+15*x+16', 'y^2=3*x^8+7*x^7+3*x^6+7*x^5+10*x^4+10*x^3+15*x^2+14*x+12', 'y^2=3*x^8+7*x^7+2*x^6+9*x^5+15*x^4+4*x^3+11*x^2+11*x+3', 'y^2=3*x^8+5*x^7+3*x^6+2*x^5+6*x^4+3*x^3+2*x^2+8*x+12', 'y^2=3*x^8+5*x^7+11*x^6+13*x^5+8*x^4+16*x^3+7*x^2+15*x+16', 'y^2=3*x^8+2*x^7+10*x^6+14*x^5+12*x^4+13*x^3+15*x^2+8*x+10', 'y^2=3*x^8+4*x^7+10*x^5+15*x^4+15*x^3+9*x^2+15*x+11', 'y^2=x^8+x^7+7*x^6+10*x^5+7*x^4+16*x^3+11*x^2+10*x+12', 'y^2=3*x^8+7*x^7+12*x^6+4*x^5+8*x^4+10*x^3+13*x^2+4*x+10', 'y^2=x^8+4*x^7+12*x^6+8*x^5+14*x^4+10*x^3+6*x^2+11*x+3', 'y^2=3*x^8+9*x^6+2*x^5+10*x^4+4*x^3+2*x^2+x+8', 'y^2=x^8+10*x^7+14*x^6+4*x^5+9*x^4+3*x^3+x^2+16*x+5', 'y^2=3*x^8+8*x^7+7*x^6+5*x^5+3*x^4+7*x^3+11*x^2+16*x+1', 'y^2=3*x^8+5*x^7+6*x^6+7*x^5+10*x^4+10*x^3+12*x^2+16*x+14', 'y^2=3*x^8+4*x^7+10*x^6+6*x^5+9*x^4+5*x^2+2*x+8', 'y^2=x^8+4*x^7+2*x^6+14*x^5+11*x^4+11*x^3+7*x^2+3', 'y^2=3*x^8+9*x^7+14*x^6+2*x^5+16*x^3+3*x^2+7*x+15', 'y^2=3*x^8+x^7+6*x^6+10*x^5+11*x^4+5*x^3+5*x^2+7*x+13', 'y^2=x^8+9*x^7+12*x^6+7*x^5+16*x^4+10*x^3+5*x^2+8*x+5', 'y^2=3*x^8+8*x^7+9*x^6+10*x^5+5*x^4+x^3+9*x^2+16*x+14', 'y^2=3*x^8+6*x^6+4*x^5+12*x^4+6*x^3+16*x^2+11*x+3', 'y^2=3*x^8+16*x^7+8*x^5+13*x^4+6*x^3+9*x^2+5*x+16', 'y^2=x^8+14*x^7+2*x^6+14*x^5+14*x^4+15*x^3+15*x^2+7*x+10', 'y^2=3*x^8+12*x^6+13*x^5+12*x^4+6*x^3+5*x^2+4*x+1', 'y^2=3*x^8+11*x^7+7*x^6+9*x^5+11*x^4+6*x^3+16*x^2+13*x+3', 'y^2=x^8+13*x^6+16*x^5+12*x^4+11*x^3+6*x^2+9*x+6', 'y^2=3*x^8+2*x^7+8*x^6+14*x^5+8*x^4+13*x^3+14*x^2+3*x+7', 'y^2=3*x^8+6*x^7+14*x^6+16*x^5+7*x^4+11*x^3+7*x^2+6*x+2', 'y^2=x^8+2*x^7+10*x^6+15*x^5+10*x^4+7*x^3+3*x^2+7*x+6', 'y^2=3*x^8+2*x^7+16*x^6+8*x^5+12*x^4+5*x^3+7*x^2+14*x+14'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 1, 'dim3_factors': 1, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'g': 3, 'galois_groups': ['6T11'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 1, 'geom_dim3_factors': 1, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 6, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['6T11'], 'geometric_number_fields': ['6.0.12244336.2'], 'geometric_splitting_field': '6.0.12244336.2', 'geometric_splitting_polynomials': [[16, -32, 44, -25, 15, -3, 1]], 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 100, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'label': '3.17.ag_bv_agi', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 4, 'newton_elevation': 0, 'number_fields': ['6.0.12244336.2'], 'p': 17, 'p_rank': 3, 'p_rank_deficit': 0, 'poly': [1, -6, 47, -164, 799, -1734, 4913], 'poly_str': '1 -6 47 -164 799 -1734 4913 ', 'primitive_models': [], 'q': 17, 'real_poly': [1, -6, -4, 40], 'simple_distinct': ['3.17.ag_bv_agi'], 'simple_factors': ['3.17.ag_bv_agiA'], 'simple_multiplicities': [1], 'slopes': ['0A', '0B', '0C', '1A', '1B', '1C'], 'splitting_field': '6.0.12244336.2', 'splitting_polynomials': [[16, -32, 44, -25, 15, -3, 1]], 'twist_count': 2, 'twists': [['3.17.g_bv_gi', '3.289.cg_cst_cdbw', 2]]}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '3.17.ag_bv_agi', 'extension_degree': 1, 'extension_label': '3.17.ag_bv_agi', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0', '0', '0'], 'center': '6.0.12244336.2', 'center_dim': 6, 'divalg_dim': 1, 'extension_label': '3.17.ag_bv_agi', 'galois_group': '6T11', 'places': [['1', '1', '0', '0', '0', '0'], ['1', '7', '1', '0', '0', '0'], ['15', '1', '0', '0', '0', '0'], ['9', '8', '1', '0', '0', '0']]}