Invariants
Base field: | $\F_{83}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 6 x + 83 x^{2} )( 1 + 3 x + 83 x^{2} )$ |
$1 - 3 x + 148 x^{2} - 249 x^{3} + 6889 x^{4}$ | |
Frobenius angles: | $\pm0.393189690303$, $\pm0.552648295368$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $160$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6786$ | $49469940$ | $327259654488$ | $2251628276695200$ | $15515913428650023246$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $81$ | $7177$ | $572346$ | $47444329$ | $3939008211$ | $326940508834$ | $27136048867785$ | $2252292294046801$ | $186940256024457918$ | $15516041178852707257$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 160 curves (of which all are hyperelliptic):
- $y^2=57 x^6+58 x^5+64 x^4+44 x^3+36 x^2+49 x+75$
- $y^2=14 x^6+76 x^5+76 x^4+73 x^3+11 x^2+65 x+23$
- $y^2=74 x^6+53 x^5+24 x^4+5 x^3+41 x^2+81$
- $y^2=65 x^6+54 x^5+56 x^4+28 x^3+15 x^2+10 x+74$
- $y^2=30 x^6+36 x^5+77 x^4+21 x^3+80 x^2+71 x+39$
- $y^2=55 x^6+18 x^5+54 x^4+69 x^3+4 x^2+77 x+55$
- $y^2=14 x^6+2 x^5+75 x^4+82 x^3+79 x^2+51 x+70$
- $y^2=62 x^6+33 x^5+73 x^4+81 x^3+3 x^2+76 x+61$
- $y^2=59 x^6+57 x^5+58 x^4+62 x^3+45 x^2+16 x+13$
- $y^2=33 x^6+65 x^5+18 x^4+74 x^2+47 x+8$
- $y^2=59 x^6+79 x^5+43 x^4+14 x^3+52 x^2+76 x+6$
- $y^2=53 x^6+36 x^5+82 x^4+46 x^3+39 x^2+56 x+58$
- $y^2=15 x^6+36 x^5+39 x^4+64 x^3+79 x^2+75 x+67$
- $y^2=72 x^6+3 x^5+45 x^4+64 x^3+59 x^2+41 x+39$
- $y^2=49 x^6+58 x^5+18 x^4+42 x^3+74 x^2+37 x+80$
- $y^2=51 x^6+64 x^5+22 x^4+31 x^3+57 x^2+81 x+63$
- $y^2=32 x^6+81 x^5+79 x^4+33 x^3+54 x^2+21 x+57$
- $y^2=48 x^6+59 x^5+49 x^4+7 x^3+65 x^2+78 x+80$
- $y^2=x^6+7 x^5+29 x^4+81 x^3+20 x^2+8 x+2$
- $y^2=77 x^6+30 x^5+55 x^4+66 x^3+78 x^2+7 x+32$
- and 140 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$The isogeny class factors as 1.83.ag $\times$ 1.83.d and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.83.aj_hc | $2$ | (not in LMFDB) |
2.83.d_fs | $2$ | (not in LMFDB) |
2.83.j_hc | $2$ | (not in LMFDB) |