-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 6786, 'abvar_counts': [6786, 49469940, 327259654488, 2251628276695200, 15515913428650023246, 106890052027659589391040, 736365205733180106881211102, 5072820438388230980679861878400, 34946659180991520957936745830599352, 240747533993460669818114792068817339700], 'abvar_counts_str': '6786 49469940 327259654488 2251628276695200 15515913428650023246 106890052027659589391040 736365205733180106881211102 5072820438388230980679861878400 34946659180991520957936745830599352 240747533993460669818114792068817339700 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.393189690303089, 0.552648295367629], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 81, 'curve_counts': [81, 7177, 572346, 47444329, 3939008211, 326940508834, 27136048867785, 2252292294046801, 186940256024457918, 15516041178852707257], 'curve_counts_str': '81 7177 572346 47444329 3939008211 326940508834 27136048867785 2252292294046801 186940256024457918 15516041178852707257 ', 'curves': ['y^2=57*x^6+58*x^5+64*x^4+44*x^3+36*x^2+49*x+75', 'y^2=14*x^6+76*x^5+76*x^4+73*x^3+11*x^2+65*x+23', 'y^2=74*x^6+53*x^5+24*x^4+5*x^3+41*x^2+81', 'y^2=65*x^6+54*x^5+56*x^4+28*x^3+15*x^2+10*x+74', 'y^2=30*x^6+36*x^5+77*x^4+21*x^3+80*x^2+71*x+39', 'y^2=55*x^6+18*x^5+54*x^4+69*x^3+4*x^2+77*x+55', 'y^2=14*x^6+2*x^5+75*x^4+82*x^3+79*x^2+51*x+70', 'y^2=62*x^6+33*x^5+73*x^4+81*x^3+3*x^2+76*x+61', 'y^2=59*x^6+57*x^5+58*x^4+62*x^3+45*x^2+16*x+13', 'y^2=33*x^6+65*x^5+18*x^4+74*x^2+47*x+8', 'y^2=59*x^6+79*x^5+43*x^4+14*x^3+52*x^2+76*x+6', 'y^2=53*x^6+36*x^5+82*x^4+46*x^3+39*x^2+56*x+58', 'y^2=15*x^6+36*x^5+39*x^4+64*x^3+79*x^2+75*x+67', 'y^2=72*x^6+3*x^5+45*x^4+64*x^3+59*x^2+41*x+39', 'y^2=49*x^6+58*x^5+18*x^4+42*x^3+74*x^2+37*x+80', 'y^2=51*x^6+64*x^5+22*x^4+31*x^3+57*x^2+81*x+63', 'y^2=32*x^6+81*x^5+79*x^4+33*x^3+54*x^2+21*x+57', 'y^2=48*x^6+59*x^5+49*x^4+7*x^3+65*x^2+78*x+80', 'y^2=x^6+7*x^5+29*x^4+81*x^3+20*x^2+8*x+2', 'y^2=77*x^6+30*x^5+55*x^4+66*x^3+78*x^2+7*x+32', 'y^2=74*x^6+42*x^5+x^4+24*x^3+28*x^2+18*x+49', 'y^2=81*x^6+18*x^5+25*x^4+57*x^3+79*x^2+38*x+60', 'y^2=24*x^6+72*x^5+36*x^4+69*x^3+65*x^2+53*x+26', 'y^2=23*x^6+66*x^5+41*x^4+72*x^3+8*x^2+47*x+37', 'y^2=17*x^6+24*x^5+48*x^4+68*x^3+71*x^2+27*x+31', 'y^2=34*x^6+73*x^5+78*x^4+54*x^3+42*x^2+32*x+40', 'y^2=81*x^6+47*x^5+13*x^4+52*x^3+52*x^2+64*x+12', 'y^2=35*x^6+67*x^5+82*x^4+61*x^3+61*x^2+18*x+66', 'y^2=81*x^6+69*x^5+15*x^4+10*x^3+61*x^2+38*x+12', 'y^2=73*x^6+38*x^5+72*x^4+7*x^3+72*x^2+67*x+50', 'y^2=17*x^6+57*x^5+54*x^4+82*x^3+13*x^2+33*x+27', 'y^2=25*x^6+16*x^5+8*x^4+63*x^3+42*x^2+37*x+79', 'y^2=x^6+64*x^5+44*x^4+61*x^3+67*x^2+42*x+17', 'y^2=81*x^6+66*x^5+48*x^4+57*x^3+36*x^2+38*x+1', 'y^2=2*x^6+23*x^5+10*x^4+68*x^3+40*x^2+65*x+1', 'y^2=50*x^6+59*x^5+13*x^4+76*x^2+76*x+41', 'y^2=54*x^6+78*x^5+27*x^4+77*x^3+38*x+45', 'y^2=24*x^6+30*x^5+64*x^4+21*x^3+82*x^2+78*x+19', 'y^2=47*x^6+23*x^5+35*x^4+43*x^3+31*x^2+4*x+52', 'y^2=6*x^6+72*x^5+47*x^4+27*x^3+16*x^2+70*x+69', 'y^2=67*x^6+4*x^5+38*x^4+68*x^3+21*x^2+59*x+49', 'y^2=47*x^6+58*x^5+3*x^4+59*x^3+34*x^2+38*x+41', 'y^2=51*x^6+53*x^5+2*x^4+62*x^3+63*x^2+43*x+41', 'y^2=38*x^6+63*x^5+80*x^4+40*x^3+21*x^2+35*x+59', 'y^2=22*x^6+60*x^5+26*x^4+58*x^3+35*x^2+5*x+32', 'y^2=55*x^6+10*x^5+36*x^4+14*x^3+35*x^2+78*x+3', 'y^2=25*x^6+66*x^5+13*x^4+29*x^3+64*x^2+20*x+6', 'y^2=71*x^6+11*x^5+58*x^4+68*x^3+62*x^2+55*x+78', 'y^2=42*x^6+10*x^5+43*x^4+72*x^3+58*x^2+56*x+35', 'y^2=51*x^6+19*x^5+74*x^4+7*x^3+42*x^2+34*x+23', 'y^2=47*x^6+40*x^5+70*x^4+7*x^3+58*x^2+36*x+48', 'y^2=75*x^6+16*x^5+82*x^4+4*x^3+55*x^2+6*x+25', 'y^2=66*x^6+43*x^5+27*x^4+80*x^3+28*x^2+45*x+13', 'y^2=10*x^6+80*x^5+31*x^4+60*x^3+76*x^2+39*x+3', 'y^2=14*x^6+41*x^5+64*x^4+67*x^3+73*x^2+42*x+63', 'y^2=81*x^6+27*x^5+74*x^4+73*x^3+70*x^2+79*x+72', 'y^2=69*x^6+44*x^5+4*x^4+21*x^3+82*x^2+43*x+65', 'y^2=13*x^6+50*x^5+17*x^4+78*x^3+31*x^2+65*x+61', 'y^2=14*x^6+53*x^5+77*x^4+81*x^3+75*x+19', 'y^2=10*x^6+27*x^5+69*x^4+16*x^3+49*x^2+8*x+26', 'y^2=21*x^6+37*x^5+32*x^4+56*x^3+10*x^2+14*x+57', 'y^2=53*x^6+45*x^5+75*x^4+50*x^3+6*x^2+16*x+59', 'y^2=3*x^6+55*x^5+19*x^4+45*x^3+24*x^2+65*x+14', 'y^2=80*x^6+76*x^5+82*x^4+56*x^3+x^2+38*x+18', 'y^2=75*x^6+37*x^5+4*x^4+71*x^3+x^2+37*x+14', 'y^2=40*x^6+24*x^5+18*x^4+30*x^3+64*x^2+45*x+64', 'y^2=19*x^6+70*x^5+31*x^4+19*x^3+80*x^2+47*x+60', 'y^2=62*x^6+7*x^5+20*x^4+27*x^3+29*x^2+37*x+38', 'y^2=32*x^6+62*x^5+62*x^4+80*x^3+61*x^2+52*x+72', 'y^2=24*x^6+79*x^5+16*x^4+42*x^3+80*x^2+22*x+11', 'y^2=72*x^6+62*x^5+25*x^4+50*x^3+66*x^2+53*x+28', 'y^2=46*x^6+78*x^5+3*x^4+53*x^3+16*x^2+18*x+63', 'y^2=58*x^6+50*x^5+35*x^4+54*x^3+50*x^2+40*x+78', 'y^2=14*x^6+68*x^5+49*x^4+57*x^3+6*x^2+27*x+18', 'y^2=34*x^6+79*x^5+43*x^4+52*x^3+41*x^2+62*x+51', 'y^2=33*x^6+79*x^5+9*x^4+48*x^3+30*x^2+70*x+35', 'y^2=13*x^6+73*x^5+21*x^4+82*x^3+56*x^2+71*x+46', 'y^2=35*x^6+46*x^5+36*x^4+66*x^3+57*x^2+82*x+30', 'y^2=6*x^6+29*x^5+30*x^4+78*x^3+21*x^2+36*x+30', 'y^2=25*x^6+28*x^5+36*x^4+49*x^3+81*x^2+57*x+26', 'y^2=52*x^6+61*x^4+79*x^3+72*x^2+2*x+70', 'y^2=31*x^6+66*x^5+59*x^4+49*x^3+73*x^2+16*x+26', 'y^2=63*x^6+2*x^5+39*x^4+17*x^3+58*x^2+38*x+64', 'y^2=25*x^6+72*x^5+10*x^4+58*x^3+82*x^2+36*x+69', 'y^2=44*x^6+39*x^5+38*x^4+49*x^3+14*x^2+77*x+15', 'y^2=70*x^6+25*x^5+69*x^4+55*x^3+26*x^2+69*x+56', 'y^2=37*x^6+46*x^5+47*x^4+5*x^3+69*x^2+68*x+43', 'y^2=21*x^6+10*x^5+25*x^4+12*x^3+29*x^2+18*x+68', 'y^2=79*x^6+53*x^5+3*x^4+63*x^3+49*x^2+29*x+53', 'y^2=6*x^6+34*x^5+58*x^4+76*x^3+x^2+2*x+23', 'y^2=32*x^6+55*x^5+10*x^4+36*x^3+3*x^2+59*x+2', 'y^2=48*x^6+19*x^5+9*x^4+37*x^3+32*x^2+8*x+30', 'y^2=65*x^6+56*x^5+44*x^4+27*x^3+80*x^2+53*x+14', 'y^2=3*x^6+6*x^5+73*x^4+60*x^3+54*x^2+21*x+22', 'y^2=41*x^6+80*x^5+50*x^4+58*x^3+33*x^2+35*x+27', 'y^2=63*x^6+68*x^5+75*x^4+19*x^3+35*x^2+51*x+25', 'y^2=60*x^6+11*x^5+54*x^4+78*x^3+48*x^2+19*x+8', 'y^2=82*x^6+39*x^5+50*x^4+11*x^3+61*x^2+21*x+21', 'y^2=24*x^6+54*x^5+36*x^4+77*x^3+42*x^2+66*x+33', 'y^2=19*x^6+39*x^5+19*x^4+38*x^3+70*x^2+27*x+59', 'y^2=60*x^6+28*x^5+9*x^4+27*x^3+63*x^2+60*x+19', 'y^2=15*x^6+11*x^5+47*x^4+78*x^3+35*x^2+65*x+75', 'y^2=55*x^6+48*x^5+54*x^4+53*x^3+27*x^2+63*x+72', 'y^2=5*x^6+11*x^5+3*x^4+25*x^3+35*x^2+59*x+79', 'y^2=66*x^6+74*x^5+52*x^4+33*x^3+x^2+52*x+37', 'y^2=4*x^5+x^4+6*x^3+20*x^2+58*x+32', 'y^2=24*x^6+43*x^5+59*x^4+25*x^3+26*x^2+39*x+13', 'y^2=82*x^6+32*x^5+4*x^4+10*x^3+61*x^2+46*x+72', 'y^2=16*x^6+66*x^5+59*x^4+18*x^3+68*x^2+80*x+32', 'y^2=52*x^6+43*x^5+x^4+76*x^3+67*x^2+39*x+52', 'y^2=73*x^6+18*x^5+x^4+59*x^3+61*x^2+61*x+64', 'y^2=25*x^6+17*x^5+11*x^4+4*x^3+49*x^2+6*x+47', 'y^2=11*x^6+36*x^5+43*x^4+65*x^3+36*x^2+48*x+7', 'y^2=55*x^6+27*x^5+42*x^4+42*x^3+5*x^2+53*x+60', 'y^2=75*x^6+42*x^5+80*x^4+35*x^3+44*x^2+64*x+39', 'y^2=72*x^6+36*x^5+16*x^4+46*x^3+69*x^2+67*x+9', 'y^2=9*x^6+35*x^5+82*x^4+24*x^3+5*x^2+72*x+65', 'y^2=40*x^6+36*x^5+10*x^4+40*x^3+x^2+64*x+14', 'y^2=21*x^6+30*x^5+43*x^4+24*x^3+67*x^2+51*x+54', 'y^2=35*x^6+64*x^5+51*x^4+6*x^3+7*x^2+64*x+4', 'y^2=12*x^6+28*x^5+40*x^4+38*x^3+43*x^2+46*x+30', 'y^2=49*x^6+74*x^5+35*x^4+77*x^3+20*x^2+10*x+82', 'y^2=28*x^6+34*x^5+33*x^4+7*x^3+78*x^2+36*x+7', 'y^2=33*x^6+29*x^5+47*x^4+81*x^3+47*x^2+47*x+52', 'y^2=63*x^6+58*x^5+59*x^4+2*x^3+38*x^2+23*x+41', 'y^2=2*x^6+62*x^5+61*x^4+44*x^3+45*x^2+6*x+19', 'y^2=77*x^6+63*x^5+12*x^4+82*x^3+9*x^2+21*x+27', 'y^2=44*x^6+31*x^5+38*x^4+59*x^3+35*x^2+74*x+37', 'y^2=44*x^6+54*x^5+13*x^4+9*x^3+54*x^2+65*x+82', 'y^2=75*x^6+52*x^5+52*x^4+49*x^3+20*x^2+4*x+7', 'y^2=37*x^6+62*x^5+25*x^4+36*x^3+65*x^2+42*x+50', 'y^2=36*x^6+77*x^5+44*x^4+53*x^3+71*x^2+74*x+19', 'y^2=29*x^6+11*x^5+45*x^4+49*x^3+80*x^2+81*x+37', 'y^2=81*x^6+39*x^5+34*x^4+33*x^3+70*x^2+37*x+76', 'y^2=49*x^6+63*x^5+15*x^4+7*x^3+56*x^2+66*x+75', 'y^2=35*x^6+19*x^5+36*x^4+51*x^3+43*x^2+42*x+32', 'y^2=51*x^6+66*x^5+12*x^4+70*x^3+26*x^2+68*x+48', 'y^2=59*x^6+18*x^5+20*x^4+15*x^3+79*x^2+60*x+69', 'y^2=56*x^6+25*x^5+41*x^4+45*x^3+27*x^2+62*x+72', 'y^2=4*x^6+82*x^5+19*x^4+31*x^3+20*x^2+44*x+13', 'y^2=33*x^6+50*x^5+45*x^4+61*x^3+24*x^2+45*x+78', 'y^2=45*x^6+45*x^5+63*x^4+59*x^3+30*x^2+78*x+61', 'y^2=77*x^6+66*x^5+6*x^4+41*x^3+52*x^2+11*x+14', 'y^2=31*x^6+60*x^5+41*x^4+77*x^3+60*x^2+22*x+4', 'y^2=52*x^6+78*x^4+77*x^3+21*x^2+66*x+25', 'y^2=23*x^6+14*x^5+15*x^4+69*x^3+3*x^2+34*x+62', 'y^2=31*x^6+48*x^5+42*x^4+57*x^2+62*x+66', 'y^2=16*x^6+16*x^5+43*x^4+75*x^3+5*x^2+12*x+41', 'y^2=25*x^6+14*x^5+77*x^4+8*x^2+23*x+41', 'y^2=21*x^6+79*x^5+31*x^4+48*x^3+69*x^2+19*x+10', 'y^2=11*x^6+8*x^5+26*x^4+17*x^3+36*x^2+47*x+70', 'y^2=16*x^6+5*x^5+73*x^4+80*x^3+62*x^2+5*x+6', 'y^2=72*x^6+19*x^5+36*x^4+45*x^3+73*x^2+7*x+1', 'y^2=28*x^6+2*x^5+6*x^4+63*x^3+53*x^2+41*x+1', 'y^2=28*x^6+33*x^5+15*x^4+70*x^3+21*x^2+77*x+41', 'y^2=25*x^6+71*x^5+13*x^4+2*x^3+20*x^2+80*x+33', 'y^2=62*x^6+60*x^5+58*x^4+18*x^3+26*x^2+6*x+70', 'y^2=17*x^6+33*x^5+31*x^4+29*x^3+52*x^2+6*x+65', 'y^2=55*x^6+8*x^5+46*x^4+29*x^3+14*x+4', 'y^2=26*x^6+31*x^5+71*x^4+11*x^3+67*x^2+27*x+41'], 'dim1_distinct': 2, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 9, 'g': 2, 'galois_groups': ['2T1', '2T1'], 'geom_dim1_distinct': 2, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1', '2T1'], 'geometric_number_fields': ['2.0.296.1', '2.0.323.1'], 'geometric_splitting_polynomials': [[123, -310, 311, -2, 1]], 'group_structure_count': 2, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 160, 'is_geometrically_simple': False, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': False, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 160, 'label': '2.83.ad_fs', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.296.1', '2.0.323.1'], 'p': 83, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, -3, 148, -249, 6889], 'poly_str': '1 -3 148 -249 6889 ', 'primitive_models': [], 'q': 83, 'real_poly': [1, -3, -18], 'simple_distinct': ['1.83.ag', '1.83.d'], 'simple_factors': ['1.83.agA', '1.83.dA'], 'simple_multiplicities': [1, 1], 'singular_primes': ['3,5*V-35', '3,-20*F-1'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_polynomials': [[123, -310, 311, -2, 1]], 'twist_count': 4, 'twists': [['2.83.aj_hc', '2.6889.lb_byoy', 2], ['2.83.d_fs', '2.6889.lb_byoy', 2], ['2.83.j_hc', '2.6889.lb_byoy', 2]], 'weak_equivalence_count': 9, 'zfv_index': 81, 'zfv_index_factorization': [[3, 4]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 95608, 'zfv_singular_count': 4, 'zfv_singular_primes': ['3,5*V-35', '3,-20*F-1']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 108678
{'base_label': '2.83.ad_fs', 'extension_degree': 1, 'extension_label': '1.83.ag', 'multiplicity': 1}
-
id: 108679
{'base_label': '2.83.ad_fs', 'extension_degree': 1, 'extension_label': '1.83.d', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.296.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.83.ag', 'galois_group': '2T1', 'places': [['80', '1'], ['3', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.323.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.83.d', 'galois_group': '2T1', 'places': [['1', '1'], ['81', '1']]}