Invariants
| Base field: | $\F_{83}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 18 x + 83 x^{2} )( 1 - 12 x + 83 x^{2} )$ |
| $1 - 30 x + 382 x^{2} - 2490 x^{3} + 6889 x^{4}$ | |
| Frobenius angles: | $\pm0.0496118990883$, $\pm0.271155063531$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $30$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4752$ | $46531584$ | $326888355024$ | $2252392220491776$ | $15515905884131066832$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $54$ | $6754$ | $571698$ | $47460430$ | $3939006294$ | $326939250418$ | $27136036291698$ | $2252292120115294$ | $186940254961923894$ | $15516041191968600514$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 30 curves (of which all are hyperelliptic):
- $y^2=82 x^6+49 x^5+63 x^4+23 x^3+63 x^2+49 x+82$
- $y^2=82 x^6+11 x^5+20 x^4+55 x^3+25 x^2+22 x+34$
- $y^2=18 x^6+82 x^5+57 x^4+79 x^3+57 x^2+82 x+18$
- $y^2=46 x^6+29 x^5+33 x^4+79 x^3+40 x^2+75 x+5$
- $y^2=51 x^6+49 x^5+44 x^4+65 x^3+78 x^2+54 x+73$
- $y^2=27 x^6+20 x^5+9 x^4+48 x^3+79 x^2+33 x+46$
- $y^2=39 x^6+13 x^5+72 x^4+42 x^3+72 x^2+13 x+39$
- $y^2=69 x^6+21 x^5+69 x^4+36 x^3+58 x^2+24 x+74$
- $y^2=73 x^6+46 x^5+63 x^4+15 x^3+58 x^2+81 x+35$
- $y^2=70 x^6+19 x^5+5 x^4+16 x^3+39 x^2+67 x+12$
- $y^2=36 x^6+67 x^5+66 x^4+62 x^3+65 x^2+8 x+28$
- $y^2=36 x^6+24 x^5+18 x^4+12 x^3+48 x^2+36 x+11$
- $y^2=5 x^6+49 x^5+36 x^4+57 x^3+36 x^2+49 x+5$
- $y^2=73 x^6+38 x^5+51 x^4+20 x^3+53 x^2+11 x+82$
- $y^2=16 x^6+79 x^5+56 x^4+4 x^3+74 x^2+18 x+59$
- $y^2=24 x^6+54 x^5+62 x^4+57 x^3+59 x^2+55 x+57$
- $y^2=19 x^6+28 x^5+2 x^4+8 x^3+9 x^2+58 x+60$
- $y^2=13 x^6+82 x^5+61 x^4+40 x^3+65 x^2+35 x+5$
- $y^2=40 x^6+74 x^5+44 x^4+81 x^3+3 x^2+80 x+16$
- $y^2=60 x^6+x^5+5 x^4+65 x^3+38 x^2+18 x+13$
- $y^2=29 x^6+27 x^5+51 x^4+59 x^3+43 x^2+35 x+31$
- $y^2=28 x^6+39 x^5+6 x^4+20 x^3+10 x^2+8 x+67$
- $y^2=79 x^6+58 x^5+29 x^4+72 x^3+29 x^2+58 x+79$
- $y^2=55 x^6+54 x^5+39 x^4+82 x^3+75 x^2+76 x+34$
- $y^2=18 x^6+56 x^5+64 x^4+80 x^3+24 x^2+41 x+42$
- $y^2=39 x^6+59 x^5+29 x^4+46 x^3+36 x^2+18 x+74$
- $y^2=35 x^6+12 x^5+77 x^4+73 x^3+28 x^2+49 x+62$
- $y^2=79 x^6+37 x^5+4 x^4+45 x^3+76 x^2+74 x+22$
- $y^2=78 x^6+30 x^5+9 x^4+9 x^3+15 x^2+79 x+52$
- $y^2=67 x^6+10 x^5+79 x^4+44 x^3+28 x^2+51 x+24$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$| The isogeny class factors as 1.83.as $\times$ 1.83.am and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.83.ag_aby | $2$ | (not in LMFDB) |
| 2.83.g_aby | $2$ | (not in LMFDB) |
| 2.83.be_os | $2$ | (not in LMFDB) |