-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 4752, 'abvar_counts': [4752, 46531584, 326888355024, 2252392220491776, 15515905884131066832, 106889640601270309364736, 736364864467960391709598608, 5072820046643653293152232013824, 34946658982361139394612697228092176, 240747534196967409795215523846021325824], 'abvar_counts_str': '4752 46531584 326888355024 2252392220491776 15515905884131066832 106889640601270309364736 736364864467960391709598608 5072820046643653293152232013824 34946658982361139394612697228092176 240747534196967409795215523846021325824 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.0496118990883417, 0.27115506353094], 'center_dim': 4, 'cohen_macaulay_max': 2, 'curve_count': 54, 'curve_counts': [54, 6754, 571698, 47460430, 3939006294, 326939250418, 27136036291698, 2252292120115294, 186940254961923894, 15516041191968600514], 'curve_counts_str': '54 6754 571698 47460430 3939006294 326939250418 27136036291698 2252292120115294 186940254961923894 15516041191968600514 ', 'curves': ['y^2=82*x^6+49*x^5+63*x^4+23*x^3+63*x^2+49*x+82', 'y^2=82*x^6+11*x^5+20*x^4+55*x^3+25*x^2+22*x+34', 'y^2=18*x^6+82*x^5+57*x^4+79*x^3+57*x^2+82*x+18', 'y^2=46*x^6+29*x^5+33*x^4+79*x^3+40*x^2+75*x+5', 'y^2=51*x^6+49*x^5+44*x^4+65*x^3+78*x^2+54*x+73', 'y^2=27*x^6+20*x^5+9*x^4+48*x^3+79*x^2+33*x+46', 'y^2=39*x^6+13*x^5+72*x^4+42*x^3+72*x^2+13*x+39', 'y^2=69*x^6+21*x^5+69*x^4+36*x^3+58*x^2+24*x+74', 'y^2=73*x^6+46*x^5+63*x^4+15*x^3+58*x^2+81*x+35', 'y^2=70*x^6+19*x^5+5*x^4+16*x^3+39*x^2+67*x+12', 'y^2=36*x^6+67*x^5+66*x^4+62*x^3+65*x^2+8*x+28', 'y^2=36*x^6+24*x^5+18*x^4+12*x^3+48*x^2+36*x+11', 'y^2=5*x^6+49*x^5+36*x^4+57*x^3+36*x^2+49*x+5', 'y^2=73*x^6+38*x^5+51*x^4+20*x^3+53*x^2+11*x+82', 'y^2=16*x^6+79*x^5+56*x^4+4*x^3+74*x^2+18*x+59', 'y^2=24*x^6+54*x^5+62*x^4+57*x^3+59*x^2+55*x+57', 'y^2=19*x^6+28*x^5+2*x^4+8*x^3+9*x^2+58*x+60', 'y^2=13*x^6+82*x^5+61*x^4+40*x^3+65*x^2+35*x+5', 'y^2=40*x^6+74*x^5+44*x^4+81*x^3+3*x^2+80*x+16', 'y^2=60*x^6+x^5+5*x^4+65*x^3+38*x^2+18*x+13', 'y^2=29*x^6+27*x^5+51*x^4+59*x^3+43*x^2+35*x+31', 'y^2=28*x^6+39*x^5+6*x^4+20*x^3+10*x^2+8*x+67', 'y^2=79*x^6+58*x^5+29*x^4+72*x^3+29*x^2+58*x+79', 'y^2=55*x^6+54*x^5+39*x^4+82*x^3+75*x^2+76*x+34', 'y^2=18*x^6+56*x^5+64*x^4+80*x^3+24*x^2+41*x+42', 'y^2=39*x^6+59*x^5+29*x^4+46*x^3+36*x^2+18*x+74', 'y^2=35*x^6+12*x^5+77*x^4+73*x^3+28*x^2+49*x+62', 'y^2=79*x^6+37*x^5+4*x^4+45*x^3+76*x^2+74*x+22', 'y^2=78*x^6+30*x^5+9*x^4+9*x^3+15*x^2+79*x+52', 'y^2=67*x^6+10*x^5+79*x^4+44*x^3+28*x^2+51*x+24'], 'dim1_distinct': 2, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 24, 'g': 2, 'galois_groups': ['2T1', '2T1'], 'geom_dim1_distinct': 2, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1', '2T1'], 'geometric_number_fields': ['2.0.8.1', '2.0.47.1'], 'geometric_splitting_field': '4.0.141376.1', 'geometric_splitting_polynomials': [[102, -28, 29, -2, 1]], 'group_structure_count': 8, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 30, 'is_geometrically_simple': False, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': False, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 30, 'label': '2.83.abe_os', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.8.1', '2.0.47.1'], 'p': 83, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, -30, 382, -2490, 6889], 'poly_str': '1 -30 382 -2490 6889 ', 'primitive_models': [], 'q': 83, 'real_poly': [1, -30, 216], 'simple_distinct': ['1.83.as', '1.83.am'], 'simple_factors': ['1.83.asA', '1.83.amA'], 'simple_multiplicities': [1, 1], 'singular_primes': ['2,V-19', '3,-10*F-1', '3,-2*V+10'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.141376.1', 'splitting_polynomials': [[102, -28, 29, -2, 1]], 'twist_count': 4, 'twists': [['2.83.ag_aby', '2.6889.afg_pgg', 2], ['2.83.g_aby', '2.6889.afg_pgg', 2], ['2.83.be_os', '2.6889.afg_pgg', 2]], 'weak_equivalence_count': 28, 'zfv_index': 72, 'zfv_index_factorization': [[2, 3], [3, 2]], 'zfv_is_bass': False, 'zfv_is_maximal': False, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 1504, 'zfv_singular_count': 6, 'zfv_singular_primes': ['2,V-19', '3,-10*F-1', '3,-2*V+10']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 109150
{'base_label': '2.83.abe_os', 'extension_degree': 1, 'extension_label': '1.83.as', 'multiplicity': 1}
-
id: 109151
{'base_label': '2.83.abe_os', 'extension_degree': 1, 'extension_label': '1.83.am', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.8.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.83.as', 'galois_group': '2T1', 'places': [['74', '1'], ['9', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.47.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.83.am', 'galois_group': '2T1', 'places': [['38', '1'], ['44', '1']]}