Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 24 x + 270 x^{2} + 1752 x^{3} + 5329 x^{4}$ |
Frobenius angles: | $\pm0.645211201308$, $\pm0.914280909053$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.7600.1 |
Galois group: | $D_{4}$ |
Jacobians: | $78$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7376$ | $28205824$ | $151193904464$ | $806392774537216$ | $4297810968833992016$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $98$ | $5294$ | $388658$ | $28395870$ | $2073160898$ | $151333545998$ | $11047396808210$ | $806460172814014$ | $58871585944099874$ | $4297625832817960814$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 78 curves (of which all are hyperelliptic):
- $y^2=38 x^6+7 x^5+68 x^4+8 x^3+64 x^2+63 x+51$
- $y^2=16 x^5+3 x^4+60 x^3+60 x^2+48 x+10$
- $y^2=9 x^6+51 x^4+29 x^3+41 x^2+24 x+29$
- $y^2=20 x^6+2 x^5+18 x^4+47 x^3+15 x^2+24 x+12$
- $y^2=54 x^6+56 x^5+59 x^4+49 x^3+39 x^2+66 x+35$
- $y^2=36 x^6+49 x^5+45 x^4+47 x^3+43 x^2+19 x+5$
- $y^2=9 x^6+46 x^5+62 x^4+72 x^3+13 x^2+x$
- $y^2=40 x^6+24 x^5+70 x^4+16 x^3+22 x^2+14 x+59$
- $y^2=32 x^6+14 x^5+32 x^4+48 x^3+54 x^2+62 x+1$
- $y^2=25 x^6+56 x^5+5 x^4+41 x^3+38 x^2+45 x+47$
- $y^2=23 x^6+66 x^5+63 x^4+38 x^3+32 x^2+30 x+10$
- $y^2=3 x^6+13 x^5+35 x^4+72 x^3+55 x^2+29 x+14$
- $y^2=71 x^6+46 x^5+20 x^4+61 x^3+53 x^2+12 x+30$
- $y^2=41 x^6+21 x^5+41 x^4+34 x^3+7 x^2+49 x+49$
- $y^2=24 x^6+54 x^5+60 x^4+44 x^3+2 x^2+55 x+24$
- $y^2=24 x^6+39 x^5+60 x^4+71 x^3+69 x^2+29 x+50$
- $y^2=13 x^6+68 x^5+22 x^4+67 x^3+42 x^2+2 x+23$
- $y^2=48 x^6+67 x^5+35 x^4+65 x^3+2 x^2+37 x+11$
- $y^2=54 x^6+17 x^5+21 x^4+12 x^3+60 x^2+66 x+16$
- $y^2=42 x^6+37 x^5+2 x^4+67 x^3+33 x^2+47 x+48$
- and 58 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$The endomorphism algebra of this simple isogeny class is 4.0.7600.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.73.ay_kk | $2$ | (not in LMFDB) |