# Curves in abelian variety isogeny class 2.73.y_kk, downloaded from the LMFDB on 17 September 2025. y^2=38*x^6+7*x^5+68*x^4+8*x^3+64*x^2+63*x+51 y^2=16*x^5+3*x^4+60*x^3+60*x^2+48*x+10 y^2=9*x^6+51*x^4+29*x^3+41*x^2+24*x+29 y^2=20*x^6+2*x^5+18*x^4+47*x^3+15*x^2+24*x+12 y^2=54*x^6+56*x^5+59*x^4+49*x^3+39*x^2+66*x+35 y^2=36*x^6+49*x^5+45*x^4+47*x^3+43*x^2+19*x+5 y^2=9*x^6+46*x^5+62*x^4+72*x^3+13*x^2+x y^2=40*x^6+24*x^5+70*x^4+16*x^3+22*x^2+14*x+59 y^2=32*x^6+14*x^5+32*x^4+48*x^3+54*x^2+62*x+1 y^2=25*x^6+56*x^5+5*x^4+41*x^3+38*x^2+45*x+47 y^2=23*x^6+66*x^5+63*x^4+38*x^3+32*x^2+30*x+10 y^2=3*x^6+13*x^5+35*x^4+72*x^3+55*x^2+29*x+14 y^2=71*x^6+46*x^5+20*x^4+61*x^3+53*x^2+12*x+30 y^2=41*x^6+21*x^5+41*x^4+34*x^3+7*x^2+49*x+49 y^2=24*x^6+54*x^5+60*x^4+44*x^3+2*x^2+55*x+24 y^2=24*x^6+39*x^5+60*x^4+71*x^3+69*x^2+29*x+50 y^2=13*x^6+68*x^5+22*x^4+67*x^3+42*x^2+2*x+23 y^2=48*x^6+67*x^5+35*x^4+65*x^3+2*x^2+37*x+11 y^2=54*x^6+17*x^5+21*x^4+12*x^3+60*x^2+66*x+16 y^2=42*x^6+37*x^5+2*x^4+67*x^3+33*x^2+47*x+48 y^2=49*x^6+2*x^5+6*x^4+69*x^2+17*x+9 y^2=67*x^6+64*x^5+31*x^4+13*x^3+16*x^2+58*x+2 y^2=67*x^6+47*x^5+70*x^4+17*x^3+28*x^2+51*x+71 y^2=55*x^6+71*x^4+42*x^3+39*x^2+14*x+46 y^2=49*x^6+25*x^5+58*x^4+26*x^3+29*x^2+48*x+40 y^2=33*x^6+53*x^5+71*x^4+34*x^3+54*x^2+53*x+35 y^2=46*x^6+34*x^5+x^4+2*x^3+19*x^2+19*x+25 y^2=8*x^6+15*x^5+68*x^4+21*x^3+68*x^2+63*x+34 y^2=51*x^6+12*x^5+64*x^4+29*x^3+4*x^2+20*x+69 y^2=43*x^6+59*x^5+70*x^4+14*x^3+59*x^2+22*x+50 y^2=x^6+70*x^5+35*x^4+31*x^2+62*x+22 y^2=58*x^6+47*x^5+12*x^4+62*x^3+30*x^2+15*x+30 y^2=53*x^6+55*x^5+47*x^4+63*x^3+61*x^2+11*x+48 y^2=63*x^6+46*x^5+70*x^4+33*x^3+18*x^2+30*x+37 y^2=25*x^6+21*x^5+4*x^4+49*x^3+6*x^2+68*x+9 y^2=46*x^6+43*x^5+25*x^4+50*x^3+26*x^2+70*x+57 y^2=5*x^6+40*x^5+47*x^4+49*x^3+36*x^2+38*x+48 y^2=24*x^6+4*x^5+9*x^4+51*x^3+56*x^2+28*x+71 y^2=4*x^6+61*x^5+52*x^4+43*x^3+9*x^2+62*x+72 y^2=71*x^6+11*x^5+66*x^4+36*x^3+34*x^2+10*x+48 y^2=32*x^6+54*x^5+31*x^4+27*x^3+23*x^2+36*x+25 y^2=69*x^6+32*x^5+57*x^4+42*x^3+31*x^2+37*x+25 y^2=35*x^6+39*x^5+59*x^4+3*x^3+40*x^2+36*x+44 y^2=46*x^6+44*x^5+15*x^4+66*x^3+56*x^2+5*x+72 y^2=50*x^5+41*x^4+x^3+28*x^2+47*x+21 y^2=34*x^6+56*x^5+27*x^4+39*x^3+14*x^2+60*x+7 y^2=36*x^6+59*x^5+6*x^4+50*x^3+32*x^2+29*x+62 y^2=70*x^6+18*x^5+8*x^4+19*x^3+5*x^2+71*x+48 y^2=72*x^6+43*x^5+10*x^4+55*x^3+44*x^2+33*x+8 y^2=35*x^6+46*x^5+41*x^4+59*x^3+10*x^2+28*x+25 y^2=58*x^6+66*x^5+37*x^4+48*x^3+25*x^2+11*x+50 y^2=65*x^5+54*x^4+65*x^3+35*x^2+15*x+21 y^2=8*x^6+59*x^5+7*x^4+27*x^3+8*x^2+43*x+19 y^2=36*x^6+39*x^5+55*x^4+51*x^3+65*x^2+43*x+42 y^2=8*x^6+15*x^5+60*x^4+37*x^3+35*x^2+53*x+13 y^2=46*x^6+10*x^5+65*x^4+45*x^3+47*x^2+52*x+24 y^2=6*x^6+57*x^5+39*x^4+28*x^3+70*x^2+2*x+49 y^2=62*x^6+56*x^5+52*x^4+x^3+27*x^2+55*x+35 y^2=26*x^6+63*x^5+66*x^4+32*x^3+31*x^2+17*x+2 y^2=37*x^6+58*x^5+54*x^4+49*x^3+44*x^2+69*x+41 y^2=50*x^6+16*x^5+42*x^4+72*x^3+36*x^2+32*x+7 y^2=39*x^6+43*x^5+59*x^4+7*x^3+67*x^2+30*x+7 y^2=54*x^6+7*x^5+8*x^4+32*x^3+34*x^2+15*x+61 y^2=54*x^6+23*x^5+41*x^4+25*x^3+68*x^2+41*x+46 y^2=41*x^6+58*x^5+61*x^4+10*x^3+24*x^2+14*x+66 y^2=66*x^6+18*x^5+54*x^4+37*x^3+59*x^2+40*x+16 y^2=41*x^6+22*x^5+31*x^4+22*x^3+68*x^2+48*x+24 y^2=4*x^6+68*x^5+17*x^4+5*x^3+72*x^2+52*x+16 y^2=20*x^6+63*x^5+11*x^4+15*x^3+31*x^2+39*x+1 y^2=17*x^6+70*x^5+68*x^4+50*x^3+51*x^2+23*x+67 y^2=45*x^6+25*x^5+61*x^4+30*x^3+2*x^2+18*x+54 y^2=27*x^6+22*x^5+70*x^4+5*x^3+6*x^2+57*x+34 y^2=32*x^6+35*x^5+62*x^4+35*x^3+8*x^2+16*x+57 y^2=5*x^6+63*x^5+8*x^4+19*x^3+10*x^2+8*x+65 y^2=65*x^5+43*x^4+37*x^3+67*x^2+36*x+36 y^2=39*x^6+9*x^5+67*x^4+44*x^3+6*x^2+64*x+64 y^2=67*x^6+59*x^5+14*x^4+8*x^3+30*x^2+49*x+13 y^2=46*x^6+2*x^5+37*x^4+23*x^2+57*x+60