Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 7 x + 73 x^{2} )( 1 + 10 x + 73 x^{2} )$ |
$1 + 17 x + 216 x^{2} + 1241 x^{3} + 5329 x^{4}$ | |
Frobenius angles: | $\pm0.634347079753$, $\pm0.698986253580$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $45$ |
Isomorphism classes: | 178 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6804$ | $29175552$ | $150410557584$ | $806738206546944$ | $4297790802781220724$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $91$ | $5473$ | $386638$ | $28408033$ | $2073151171$ | $151332950158$ | $11047403557099$ | $806460130961281$ | $58871586115531294$ | $4297625831889913393$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 45 curves (of which all are hyperelliptic):
- $y^2=38 x^6+44 x^5+55 x^4+6 x^3+33 x^2+41 x+49$
- $y^2=51 x^6+14 x^5+69 x^4+57 x^3+9 x^2+64 x+49$
- $y^2=42 x^6+26 x^5+29 x^4+63 x^3+72 x^2+3 x+16$
- $y^2=x^6+45 x^4+71 x^3+41 x^2+23 x+51$
- $y^2=51 x^6+22 x^5+58 x^4+45 x^3+35 x^2+23 x+1$
- $y^2=41 x^6+63 x^5+62 x^4+45 x^3+3 x^2+70 x+8$
- $y^2=44 x^6+42 x^5+27 x^4+49 x^3+14 x^2+31 x+18$
- $y^2=x^6+44 x^5+37 x^4+72 x^3+33 x^2+14 x+65$
- $y^2=70 x^6+13 x^5+56 x^4+46 x^3+5 x^2+15 x+63$
- $y^2=24 x^6+5 x^5+65 x^4+67 x^3+60 x^2+34 x+6$
- $y^2=38 x^6+64 x^5+36 x^4+16 x^3+66 x^2+65 x+9$
- $y^2=71 x^6+49 x^5+38 x^4+26 x^3+70 x^2+5 x$
- $y^2=13 x^6+42 x^5+48 x^3+18 x^2+62 x+69$
- $y^2=29 x^6+60 x^5+55 x^4+51 x^3+28 x^2+20 x+13$
- $y^2=72 x^6+67 x^5+33 x^4+15 x^3+13 x^2+49 x+17$
- $y^2=54 x^6+35 x^5+52 x^4+67 x^3+58 x^2+50 x+37$
- $y^2=58 x^6+68 x^5+x^4+67 x^3+38 x^2+51 x+19$
- $y^2=28 x^6+35 x^5+57 x^4+41 x^3+23 x^2+68 x+16$
- $y^2=21 x^6+50 x^5+7 x^4+20 x^3+55 x^2+70 x+69$
- $y^2=x^6+27 x^5+16 x^4+30 x^3+31 x^2+36 x+4$
- and 25 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73^{3}}$.
Endomorphism algebra over $\F_{73}$The isogeny class factors as 1.73.h $\times$ 1.73.k and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{73^{3}}$ is 1.389017.abtu 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.