Properties

Label 2.73.r_ii
Base field $\F_{73}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{73}$
Dimension:  $2$
L-polynomial:  $( 1 + 7 x + 73 x^{2} )( 1 + 10 x + 73 x^{2} )$
  $1 + 17 x + 216 x^{2} + 1241 x^{3} + 5329 x^{4}$
Frobenius angles:  $\pm0.634347079753$, $\pm0.698986253580$
Angle rank:  $1$ (numerical)
Jacobians:  $45$
Isomorphism classes:  178

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $6804$ $29175552$ $150410557584$ $806738206546944$ $4297790802781220724$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $91$ $5473$ $386638$ $28408033$ $2073151171$ $151332950158$ $11047403557099$ $806460130961281$ $58871586115531294$ $4297625831889913393$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 45 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{73^{3}}$.

Endomorphism algebra over $\F_{73}$
The isogeny class factors as 1.73.h $\times$ 1.73.k and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{73}$
The base change of $A$ to $\F_{73^{3}}$ is 1.389017.abtu 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.73.ar_ii$2$(not in LMFDB)
2.73.ad_cy$2$(not in LMFDB)
2.73.d_cy$2$(not in LMFDB)
2.73.abi_qt$3$(not in LMFDB)
2.73.ak_bb$3$(not in LMFDB)
2.73.ah_ay$3$(not in LMFDB)
2.73.o_hn$3$(not in LMFDB)
2.73.u_jm$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.73.ar_ii$2$(not in LMFDB)
2.73.ad_cy$2$(not in LMFDB)
2.73.d_cy$2$(not in LMFDB)
2.73.abi_qt$3$(not in LMFDB)
2.73.ak_bb$3$(not in LMFDB)
2.73.ah_ay$3$(not in LMFDB)
2.73.o_hn$3$(not in LMFDB)
2.73.u_jm$3$(not in LMFDB)
2.73.abb_me$6$(not in LMFDB)
2.73.ay_kf$6$(not in LMFDB)
2.73.au_jm$6$(not in LMFDB)
2.73.ao_hn$6$(not in LMFDB)
2.73.a_afn$6$(not in LMFDB)
2.73.a_bu$6$(not in LMFDB)
2.73.a_dt$6$(not in LMFDB)
2.73.h_ay$6$(not in LMFDB)
2.73.k_bb$6$(not in LMFDB)
2.73.y_kf$6$(not in LMFDB)
2.73.bb_me$6$(not in LMFDB)
2.73.bi_qt$6$(not in LMFDB)
2.73.a_adt$12$(not in LMFDB)
2.73.a_abu$12$(not in LMFDB)
2.73.a_fn$12$(not in LMFDB)