-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 6804, 'abvar_counts': [6804, 29175552, 150410557584, 806738206546944, 4297790802781220724, 22901854924751191474176, 122045069696565709343495412, 650377911323947186412457062400, 3465863686653762090165171775356816, 18469587781531331205080864268321015552], 'abvar_counts_str': '6804 29175552 150410557584 806738206546944 4297790802781220724 22901854924751191474176 122045069696565709343495412 650377911323947186412457062400 3465863686653762090165171775356816 18469587781531331205080864268321015552 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.634347079753091, 0.698986253580242], 'center_dim': 4, 'cohen_macaulay_max': 2, 'curve_count': 91, 'curve_counts': [91, 5473, 386638, 28408033, 2073151171, 151332950158, 11047403557099, 806460130961281, 58871586115531294, 4297625831889913393], 'curve_counts_str': '91 5473 386638 28408033 2073151171 151332950158 11047403557099 806460130961281 58871586115531294 4297625831889913393 ', 'curves': ['y^2=38*x^6+44*x^5+55*x^4+6*x^3+33*x^2+41*x+49', 'y^2=51*x^6+14*x^5+69*x^4+57*x^3+9*x^2+64*x+49', 'y^2=42*x^6+26*x^5+29*x^4+63*x^3+72*x^2+3*x+16', 'y^2=x^6+45*x^4+71*x^3+41*x^2+23*x+51', 'y^2=51*x^6+22*x^5+58*x^4+45*x^3+35*x^2+23*x+1', 'y^2=41*x^6+63*x^5+62*x^4+45*x^3+3*x^2+70*x+8', 'y^2=44*x^6+42*x^5+27*x^4+49*x^3+14*x^2+31*x+18', 'y^2=x^6+44*x^5+37*x^4+72*x^3+33*x^2+14*x+65', 'y^2=70*x^6+13*x^5+56*x^4+46*x^3+5*x^2+15*x+63', 'y^2=24*x^6+5*x^5+65*x^4+67*x^3+60*x^2+34*x+6', 'y^2=38*x^6+64*x^5+36*x^4+16*x^3+66*x^2+65*x+9', 'y^2=71*x^6+49*x^5+38*x^4+26*x^3+70*x^2+5*x', 'y^2=13*x^6+42*x^5+48*x^3+18*x^2+62*x+69', 'y^2=29*x^6+60*x^5+55*x^4+51*x^3+28*x^2+20*x+13', 'y^2=72*x^6+67*x^5+33*x^4+15*x^3+13*x^2+49*x+17', 'y^2=54*x^6+35*x^5+52*x^4+67*x^3+58*x^2+50*x+37', 'y^2=58*x^6+68*x^5+x^4+67*x^3+38*x^2+51*x+19', 'y^2=28*x^6+35*x^5+57*x^4+41*x^3+23*x^2+68*x+16', 'y^2=21*x^6+50*x^5+7*x^4+20*x^3+55*x^2+70*x+69', 'y^2=x^6+27*x^5+16*x^4+30*x^3+31*x^2+36*x+4', 'y^2=48*x^6+61*x^5+39*x^4+50*x^3+25*x^2+39*x+2', 'y^2=61*x^6+59*x^5+12*x^4+18*x^3+20*x^2+67*x+50', 'y^2=59*x^6+12*x^5+40*x^4+69*x^3+57*x^2+x+55', 'y^2=57*x^6+47*x^5+3*x^4+36*x^3+x^2+13*x+38', 'y^2=4*x^6+53*x^5+58*x^4+29*x^3+34*x^2+72*x+4', 'y^2=52*x^6+72*x^5+61*x^4+49*x^3+43*x^2+24*x+70', 'y^2=22*x^6+18*x^5+8*x^4+15*x^3+25*x^2+39*x+12', 'y^2=32*x^6+62*x^5+23*x^4+51*x^3+67*x^2+18*x+17', 'y^2=11*x^6+60*x^5+66*x^4+23*x^3+39*x^2+30*x+41', 'y^2=53*x^6+34*x^5+61*x^4+44*x^3+25*x^2+27*x+21', 'y^2=61*x^6+66*x^5+21*x^4+5*x^3+12*x^2+66*x+16', 'y^2=9*x^6+69*x^5+43*x^4+6*x^3+64*x^2+38*x+71', 'y^2=23*x^6+58*x^5+47*x^3+45*x^2+36*x+59', 'y^2=31*x^6+50*x^5+44*x^4+48*x^3+2*x^2+68*x+50', 'y^2=17*x^6+56*x^5+27*x^4+8*x^3+11*x^2+6*x+21', 'y^2=24*x^6+68*x^5+48*x^4+53*x^3+7*x^2+4*x', 'y^2=8*x^6+72*x^5+21*x^4+13*x^3+51*x^2+51*x+38', 'y^2=54*x^6+55*x^5+54*x^4+36*x^3+3*x^2+26*x+66', 'y^2=17*x^6+38*x^5+8*x^4+61*x^3+70*x^2+36*x+13', 'y^2=4*x^6+63*x^5+6*x^4+34*x^3+39*x^2+64*x+27', 'y^2=28*x^6+66*x^5+44*x^4+70*x^3+67*x^2+18*x+7', 'y^2=48*x^6+8*x^5+41*x^4+59*x^3+42*x^2+16*x+1', 'y^2=55*x^6+37*x^5+51*x^4+48*x^3+8*x^2+41*x+37', 'y^2=41*x^6+51*x^5+62*x^4+33*x^3+56*x^2+8*x+64', 'y^2=65*x^6+19*x^5+65*x^4+59*x^3+40*x^2+70*x+72'], 'dim1_distinct': 2, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 28, 'g': 2, 'galois_groups': ['2T1', '2T1'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 3, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.3.1'], 'geometric_splitting_field': '2.0.3.1', 'geometric_splitting_polynomials': [[1, -1, 1]], 'group_structure_count': 10, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 45, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': False, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 45, 'label': '2.73.r_ii', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 12, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.3.1', '2.0.3.1'], 'p': 73, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 7, 1, 9], [2, 7, 1, 6], [2, 13, 1, 6]], 'poly': [1, 17, 216, 1241, 5329], 'poly_str': '1 17 216 1241 5329 ', 'primitive_models': [], 'principal_polarization_count': 85, 'q': 73, 'real_poly': [1, 17, 70], 'simple_distinct': ['1.73.h', '1.73.k'], 'simple_factors': ['1.73.hA', '1.73.kA'], 'simple_multiplicities': [1, 1], 'singular_primes': ['3,2*V+7', '2,6*F-V-5'], 'size': 178, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '2.0.3.1', 'splitting_polynomials': [[1, -1, 1]], 'twist_count': 24, 'twists': [['2.73.ar_ii', '2.5329.fn_wjo', 2], ['2.73.ad_cy', '2.5329.fn_wjo', 2], ['2.73.d_cy', '2.5329.fn_wjo', 2], ['2.73.abi_qt', '2.389017.adno_euvtu', 3], ['2.73.ak_bb', '2.389017.adno_euvtu', 3], ['2.73.ah_ay', '2.389017.adno_euvtu', 3], ['2.73.o_hn', '2.389017.adno_euvtu', 3], ['2.73.u_jm', '2.389017.adno_euvtu', 3], ['2.73.abb_me', '2.151334226289.acupua_dkjshechy', 6], ['2.73.ay_kf', '2.151334226289.acupua_dkjshechy', 6], ['2.73.au_jm', '2.151334226289.acupua_dkjshechy', 6], ['2.73.ao_hn', '2.151334226289.acupua_dkjshechy', 6], ['2.73.a_afn', '2.151334226289.acupua_dkjshechy', 6], ['2.73.a_bu', '2.151334226289.acupua_dkjshechy', 6], ['2.73.a_dt', '2.151334226289.acupua_dkjshechy', 6], ['2.73.h_ay', '2.151334226289.acupua_dkjshechy', 6], ['2.73.k_bb', '2.151334226289.acupua_dkjshechy', 6], ['2.73.y_kf', '2.151334226289.acupua_dkjshechy', 6], ['2.73.bb_me', '2.151334226289.acupua_dkjshechy', 6], ['2.73.bi_qt', '2.151334226289.acupua_dkjshechy', 6], ['2.73.a_adt', '2.22902048046490258711521.abaahujfke_bhveshxzzlgrbjqeg', 12], ['2.73.a_abu', '2.22902048046490258711521.abaahujfke_bhveshxzzlgrbjqeg', 12], ['2.73.a_fn', '2.22902048046490258711521.abaahujfke_bhveshxzzlgrbjqeg', 12]], 'weak_equivalence_count': 36, 'zfv_index': 648, 'zfv_index_factorization': [[2, 3], [3, 4]], 'zfv_is_bass': False, 'zfv_is_maximal': False, 'zfv_pic_size': 36, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 46656, 'zfv_singular_count': 4, 'zfv_singular_primes': ['3,2*V+7', '2,6*F-V-5']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 83685
{'base_label': '2.73.r_ii', 'extension_degree': 1, 'extension_label': '1.73.h', 'multiplicity': 1}
-
id: 83686
{'base_label': '2.73.r_ii', 'extension_degree': 1, 'extension_label': '1.73.k', 'multiplicity': 1}
-
id: 83687
{'base_label': '2.73.r_ii', 'extension_degree': 3, 'extension_label': '1.389017.abtu', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.3.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.73.h', 'galois_group': '2T1', 'places': [['8', '1'], ['64', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.3.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.73.k', 'galois_group': '2T1', 'places': [['64', '1'], ['8', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.3.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.389017.abtu', 'galois_group': '2T1', 'places': [['64', '1'], ['8', '1']]}