Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 12 x + 158 x^{2} + 876 x^{3} + 5329 x^{4}$ |
| Frobenius angles: | $\pm0.520523672153$, $\pm0.720161371998$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.7252992.2 |
| Galois group: | $D_{4}$ |
| Jacobians: | $126$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6376$ | $29329600$ | $150817094248$ | $806449027968000$ | $4297626852982731496$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $86$ | $5502$ | $387686$ | $28397854$ | $2073072086$ | $151334531934$ | $11047402211750$ | $806460000927166$ | $58871586946065878$ | $4297625836359214782$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 126 curves (of which all are hyperelliptic):
- $y^2=10 x^6+36 x^5+31 x^4+13 x^3+19 x^2+33 x+45$
- $y^2=6 x^6+71 x^5+53 x^4+40 x^3+5 x^2+57 x+57$
- $y^2=12 x^6+45 x^5+12 x^4+3 x^3+16 x^2+12 x+22$
- $y^2=54 x^6+60 x^5+63 x^4+17 x^3+20 x^2+14 x+13$
- $y^2=15 x^6+69 x^5+67 x^4+18 x^3+60 x^2+16 x+57$
- $y^2=45 x^6+44 x^5+60 x^4+4 x^3+44 x^2+48 x+57$
- $y^2=24 x^6+47 x^5+11 x^4+36 x^3+57 x^2+56 x+44$
- $y^2=70 x^6+13 x^5+13 x^4+17 x^3+6 x^2+47 x+46$
- $y^2=68 x^6+45 x^5+26 x^4+42 x^3+62 x^2+36 x+43$
- $y^2=3 x^6+62 x^5+16 x^4+46 x^3+27 x^2+71 x$
- $y^2=68 x^6+63 x^5+68 x^4+63 x^3+61 x^2+18 x+13$
- $y^2=16 x^6+35 x^5+2 x^4+31 x^3+45 x^2+31 x+32$
- $y^2=55 x^6+4 x^5+x^4+60 x^3+53 x+7$
- $y^2=69 x^6+39 x^5+62 x^4+60 x^3+70 x^2+45 x+70$
- $y^2=32 x^6+18 x^5+55 x^4+42 x^3+34 x^2+64 x$
- $y^2=52 x^6+5 x^5+32 x^4+52 x^3+39 x^2+50 x+8$
- $y^2=58 x^6+27 x^5+58 x^4+29 x^3+61 x^2+46 x+42$
- $y^2=63 x^6+6 x^5+11 x^4+48 x^3+35 x^2+14 x+66$
- $y^2=63 x^6+34 x^5+9 x^4+39 x^3+31 x^2+41 x+37$
- $y^2=47 x^6+2 x^5+41 x^4+41 x^3+72 x^2+39 x+23$
- and 106 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$| The endomorphism algebra of this simple isogeny class is 4.0.7252992.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.73.am_gc | $2$ | (not in LMFDB) |