# Stored data for abelian variety isogeny class 2.73.m_gc, downloaded from the LMFDB on 10 December 2025. {"abvar_count": 6376, "abvar_counts": [6376, 29329600, 150817094248, 806449027968000, 4297626852982731496, 22902094300892243473600, 122045054833947806273689192, 650377806456625800634054656000, 3465863735548650770983348358914792, 18469587800738716314364222880693368000], "abvar_counts_str": "6376 29329600 150817094248 806449027968000 4297626852982731496 22902094300892243473600 122045054833947806273689192 650377806456625800634054656000 3465863735548650770983348358914792 18469587800738716314364222880693368000 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.520523672153108, 0.720161371997939], "center_dim": 4, "cohen_macaulay_max": 2, "curve_count": 86, "curve_counts": [86, 5502, 387686, 28397854, 2073072086, 151334531934, 11047402211750, 806460000927166, 58871586946065878, 4297625836359214782], "curve_counts_str": "86 5502 387686 28397854 2073072086 151334531934 11047402211750 806460000927166 58871586946065878 4297625836359214782 ", "curves": ["y^2=10*x^6+36*x^5+31*x^4+13*x^3+19*x^2+33*x+45", "y^2=6*x^6+71*x^5+53*x^4+40*x^3+5*x^2+57*x+57", "y^2=12*x^6+45*x^5+12*x^4+3*x^3+16*x^2+12*x+22", "y^2=54*x^6+60*x^5+63*x^4+17*x^3+20*x^2+14*x+13", "y^2=15*x^6+69*x^5+67*x^4+18*x^3+60*x^2+16*x+57", "y^2=45*x^6+44*x^5+60*x^4+4*x^3+44*x^2+48*x+57", "y^2=24*x^6+47*x^5+11*x^4+36*x^3+57*x^2+56*x+44", "y^2=70*x^6+13*x^5+13*x^4+17*x^3+6*x^2+47*x+46", "y^2=68*x^6+45*x^5+26*x^4+42*x^3+62*x^2+36*x+43", "y^2=3*x^6+62*x^5+16*x^4+46*x^3+27*x^2+71*x", "y^2=68*x^6+63*x^5+68*x^4+63*x^3+61*x^2+18*x+13", "y^2=16*x^6+35*x^5+2*x^4+31*x^3+45*x^2+31*x+32", "y^2=55*x^6+4*x^5+x^4+60*x^3+53*x+7", "y^2=69*x^6+39*x^5+62*x^4+60*x^3+70*x^2+45*x+70", "y^2=32*x^6+18*x^5+55*x^4+42*x^3+34*x^2+64*x", "y^2=52*x^6+5*x^5+32*x^4+52*x^3+39*x^2+50*x+8", "y^2=58*x^6+27*x^5+58*x^4+29*x^3+61*x^2+46*x+42", "y^2=63*x^6+6*x^5+11*x^4+48*x^3+35*x^2+14*x+66", "y^2=63*x^6+34*x^5+9*x^4+39*x^3+31*x^2+41*x+37", "y^2=47*x^6+2*x^5+41*x^4+41*x^3+72*x^2+39*x+23", "y^2=2*x^6+12*x^5+38*x^4+13*x^3+12*x^2+7*x+28", "y^2=69*x^6+8*x^5+70*x^4+64*x^3+58*x^2+31*x+5", "y^2=69*x^6+68*x^5+33*x^4+7*x^3+x^2+18*x+23", "y^2=67*x^6+16*x^5+38*x^4+4*x^3+31*x^2+61*x+29", "y^2=32*x^6+65*x^5+63*x^4+34*x^3+57*x^2+41*x+7", "y^2=69*x^6+8*x^4+56*x^3+55*x^2+63*x+53", "y^2=38*x^6+56*x^5+35*x^4+7*x^3+13*x^2+7*x+32", "y^2=27*x^6+32*x^5+24*x^4+34*x^3+46*x^2+49*x+8", "y^2=60*x^6+64*x^5+x^4+x^3+10*x^2+40*x+16", "y^2=19*x^6+47*x^5+58*x^4+29*x^3+3*x^2+45*x+71", "y^2=36*x^6+8*x^5+27*x^4+69*x^3+17*x^2+53*x+8", "y^2=26*x^6+24*x^5+55*x^4+52*x^3+3*x^2+15*x+43", "y^2=9*x^6+16*x^5+39*x^4+58*x^3+33*x^2+4*x+22", "y^2=54*x^6+57*x^5+18*x^4+72*x^3+27*x^2+47*x+42", "y^2=50*x^6+3*x^5+49*x^4+50*x^3+8*x^2+34*x+22", "y^2=42*x^6+3*x^5+38*x^4+60*x^3+8*x^2+5*x+50", "y^2=41*x^6+32*x^5+3*x^4+46*x^3+x^2+23*x+66", "y^2=38*x^6+50*x^5+29*x^4+41*x^3+x^2+52*x+8", "y^2=38*x^6+34*x^5+9*x^4+64*x^3+50*x^2+24*x+65", "y^2=8*x^6+51*x^5+30*x^4+17*x^3+31*x^2+31*x+64", "y^2=18*x^6+23*x^5+7*x^4+35*x^3+26*x^2+54*x+21", "y^2=19*x^6+60*x^5+35*x^4+38*x^3+22*x^2+48*x+70", "y^2=58*x^6+48*x^5+28*x^4+43*x^3+34*x^2+20*x+9", "y^2=4*x^6+35*x^5+3*x^4+6*x^3+71*x^2+51*x+54", "y^2=36*x^6+18*x^5+66*x^4+2*x^3+39*x^2+39*x+32", "y^2=47*x^5+60*x^4+33*x^3+59*x^2+18*x+63", "y^2=50*x^6+68*x^5+72*x^4+31*x^3+42*x^2+53*x+8", "y^2=72*x^6+43*x^5+30*x^4+34*x^2+28*x+3", "y^2=4*x^6+52*x^5+28*x^4+7*x^3+42*x^2+47*x+39", "y^2=15*x^6+23*x^5+14*x^4+26*x^3+43*x^2+10*x+71", "y^2=27*x^6+42*x^5+18*x^4+57*x^3+50*x^2+2*x+29", "y^2=29*x^6+23*x^5+66*x^4+27*x^3+52*x^2+x+27", "y^2=22*x^6+18*x^5+33*x^4+41*x^2+20*x+38", "y^2=6*x^6+19*x^5+25*x^4+5*x^3+68*x^2+55*x+40", "y^2=2*x^6+43*x^5+13*x^4+60*x^3+35*x^2+38*x+49", "y^2=9*x^6+23*x^5+62*x^4+48*x^3+64*x^2+31*x+67", "y^2=46*x^6+28*x^5+34*x^4+9*x^3+25*x^2+52*x+28", "y^2=70*x^6+71*x^5+69*x^4+72*x^3+26*x^2+30*x+21", "y^2=30*x^6+45*x^5+72*x^4+37*x^3+48*x^2+59*x+54", "y^2=43*x^6+45*x^5+56*x^4+19*x^3+22*x^2+11*x+2", "y^2=2*x^6+30*x^5+58*x^4+31*x^3+21*x^2+6*x+4", "y^2=69*x^6+24*x^5+4*x^4+54*x^3+11*x^2+27*x+12", "y^2=65*x^6+13*x^5+65*x^4+36*x^3+24*x^2+20*x+15", "y^2=45*x^6+43*x^5+29*x^4+56*x^3+31*x^2+9*x", "y^2=50*x^6+42*x^5+37*x^4+37*x^3+64*x^2+55*x+36", "y^2=53*x^6+24*x^5+47*x^3+41*x^2+39*x+46", "y^2=56*x^6+64*x^4+35*x^3+48*x^2+44*x+64", "y^2=50*x^6+69*x^5+x^4+38*x^3+6*x^2+47*x+34", "y^2=16*x^6+49*x^5+11*x^4+51*x^3+35*x^2+70*x+50", "y^2=22*x^6+48*x^5+6*x^4+63*x^3+14*x^2+8*x+32", "y^2=23*x^6+38*x^5+22*x^4+60*x^3+3*x^2+20*x+5", "y^2=67*x^6+8*x^5+15*x^4+x^3+63*x^2+26*x+43", "y^2=37*x^6+25*x^5+55*x^4+39*x^3+62*x^2+23*x+19", "y^2=35*x^6+x^5+21*x^4+68*x^3+8*x^2+19*x+32", "y^2=25*x^6+65*x^5+64*x^4+66*x^3+18*x^2+31*x+63", "y^2=35*x^6+7*x^5+44*x^4+61*x^3+12*x+14", "y^2=53*x^6+51*x^5+54*x^4+7*x^3+41*x^2+34*x+72", "y^2=10*x^6+23*x^5+10*x^4+8*x^3+14*x^2+6*x+29", "y^2=47*x^6+6*x^5+49*x^4+47*x^3+38*x^2+64*x+57", "y^2=4*x^6+63*x^5+60*x^4+49*x^3+4*x^2+16*x+69", "y^2=3*x^6+25*x^5+42*x^4+11*x^3+x^2+25*x+3", "y^2=14*x^6+29*x^5+62*x^4+68*x^3+70*x^2+64*x+64", "y^2=2*x^6+5*x^5+39*x^4+72*x^3+23*x^2+17*x+62", "y^2=62*x^5+12*x^4+11*x^3+53*x^2+60*x+21", "y^2=65*x^6+9*x^5+22*x^4+29*x^3+57*x^2+47*x+24", "y^2=31*x^6+66*x^5+69*x^4+35*x^3+64*x^2+31*x+3", "y^2=25*x^6+15*x^5+65*x^4+55*x^3+17*x^2+62*x+16", "y^2=66*x^6+39*x^5+59*x^4+66*x^3+x^2+59*x+32", "y^2=54*x^6+9*x^5+41*x^4+23*x^3+12*x^2+56*x+70", "y^2=42*x^6+42*x^5+72*x^4+32*x^3+50*x^2+39*x+40", "y^2=49*x^6+56*x^5+35*x^4+65*x^3+12*x^2+16*x+63", "y^2=36*x^6+61*x^5+11*x^4+9*x^3+61*x^2+39*x+51", "y^2=46*x^6+58*x^5+65*x^4+44*x^3+14*x^2+8*x+54", "y^2=33*x^6+46*x^5+55*x^4+68*x^3+7*x^2+63*x+21", "y^2=69*x^6+60*x^5+41*x^4+47*x^3+33*x^2+18*x+49", "y^2=39*x^6+71*x^5+40*x^4+19*x^3+24*x^2+55*x+48", "y^2=62*x^6+14*x^5+66*x^4+5*x^3+12*x^2+60*x+59", "y^2=37*x^6+27*x^5+6*x^4+7*x^3+7*x^2+27*x", "y^2=9*x^6+45*x^5+8*x^4+15*x^3+52*x^2+11*x+4", "y^2=61*x^6+48*x^5+32*x^4+47*x^3+28*x^2+34*x+71", "y^2=4*x^6+32*x^5+11*x^4+51*x^3+58*x^2+69*x+68", "y^2=32*x^6+15*x^5+13*x^4+8*x^3+30*x^2+68*x+64", "y^2=53*x^6+x^5+16*x^4+71*x^3+18*x^2+52*x+21", "y^2=56*x^6+31*x^5+61*x^4+27*x^3+67*x^2+54*x+38", "y^2=45*x^6+51*x^5+56*x^4+26*x^3+67*x^2+7*x+14", "y^2=23*x^6+7*x^5+53*x^4+7*x^3+70*x^2+63*x+12", "y^2=37*x^6+10*x^5+55*x^4+8*x^3+24*x+20", "y^2=64*x^6+49*x^5+35*x^4+60*x^3+28*x^2+58*x+24", "y^2=43*x^6+56*x^5+3*x^4+39*x^3+16*x^2+56*x+2", "y^2=17*x^6+11*x^5+22*x^4+45*x^3+56*x^2+48*x+48", "y^2=5*x^6+37*x^5+41*x^4+69*x^3+9*x^2+38*x+24", "y^2=37*x^6+13*x^5+2*x^4+39*x^3+x^2+64*x+9", "y^2=12*x^6+30*x^5+29*x^4+60*x^3+38*x^2+38*x+50", "y^2=4*x^6+13*x^5+64*x^4+49*x^3+8*x^2+36*x+21", "y^2=3*x^6+61*x^5+14*x^4+27*x^3+62*x^2+5*x+25", "y^2=59*x^6+30*x^5+10*x^4+55*x^3+32*x^2+57*x+57", "y^2=49*x^6+58*x^5+60*x^4+26*x^3+66*x^2+51*x+67", "y^2=5*x^6+34*x^5+32*x^4+55*x^3+47*x^2+66*x+1", "y^2=34*x^6+53*x^5+42*x^4+69*x^3+62*x^2+62*x+3", "y^2=16*x^6+35*x^5+10*x^4+46*x^3+61*x^2+46*x+3", "y^2=29*x^6+66*x^5+2*x^4+18*x^3+52*x^2+52*x+69", "y^2=52*x^6+3*x^5+54*x^4+53*x^3+60*x^2+9*x+62", "y^2=61*x^6+24*x^5+62*x^4+58*x^3+50*x^2+15*x+43", "y^2=70*x^6+42*x^5+6*x^4+58*x^3+68*x^2+36*x+61", "y^2=55*x^6+13*x^5+46*x^4+36*x^3+8*x^2+37*x+13", "y^2=47*x^6+29*x^5+18*x^4+32*x^3+57*x^2+67*x+44"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 4, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.7252992.2"], "geometric_splitting_field": "4.0.7252992.2", "geometric_splitting_polynomials": [[3148, 0, 116, 0, 1]], "group_structure_count": 3, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 126, "is_cyclic": false, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 126, "label": "2.73.m_gc", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "noncyclic_primes": [2], "number_fields": ["4.0.7252992.2"], "p": 73, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 12, 158, 876, 5329], "poly_str": "1 12 158 876 5329 ", "primitive_models": [], "q": 73, "real_poly": [1, 12, 12], "simple_distinct": ["2.73.m_gc"], "simple_factors": ["2.73.m_gcA"], "simple_multiplicities": [1], "singular_primes": ["2,F^2+F+2*V+24"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.7252992.2", "splitting_polynomials": [[3148, 0, 116, 0, 1]], "twist_count": 2, "twists": [["2.73.am_gc", "2.5329.gq_vpm", 2]], "weak_equivalence_count": 5, "zfv_index": 8, "zfv_index_factorization": [[2, 3]], "zfv_is_bass": false, "zfv_is_maximal": false, "zfv_plus_index": 2, "zfv_plus_index_factorization": [[2, 1]], "zfv_plus_norm": 50368, "zfv_singular_count": 2, "zfv_singular_primes": ["2,F^2+F+2*V+24"]}