Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 15 x + 59 x^{2} )( 1 - 9 x + 59 x^{2} )$ |
$1 - 24 x + 253 x^{2} - 1416 x^{3} + 3481 x^{4}$ | |
Frobenius angles: | $\pm0.0692665268586$, $\pm0.300760731311$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $28$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2295$ | $11876625$ | $42209897040$ | $146843838545625$ | $511098549913977975$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $36$ | $3412$ | $205524$ | $12118468$ | $714898836$ | $42180090262$ | $2488648350924$ | $146830434658948$ | $8662996001655756$ | $511116755543649652$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 28 curves (of which all are hyperelliptic):
- $y^2=25 x^6+35 x^5+11 x^4+29 x^3+33 x^2+20 x+26$
- $y^2=34 x^6+24 x^5+38 x^4+38 x^3+19 x^2+20 x+18$
- $y^2=58 x^6+53 x^5+43 x^4+49 x^3+30 x^2+25 x+18$
- $y^2=50 x^6+10 x^5+40 x^4+25 x^3+7 x^2+30 x+29$
- $y^2=52 x^6+55 x^5+16 x^4+21 x^3+34 x^2+34 x+42$
- $y^2=23 x^6+33 x^5+48 x^4+16 x^3+9 x^2+6$
- $y^2=32 x^6+14 x^5+x^4+41 x^3+7 x^2+35 x+24$
- $y^2=52 x^6+22 x^5+57 x^4+14 x^3+12 x^2+25 x+37$
- $y^2=58 x^6+20 x^5+44 x^4+33 x^3+11 x^2+54 x+58$
- $y^2=40 x^6+6 x^5+22 x^4+45 x^3+19 x^2+33 x+13$
- $y^2=42 x^6+49 x^5+43 x^4+57 x^3+23 x^2+x+23$
- $y^2=17 x^6+7 x^5+35 x^4+54 x^3+26 x^2+9 x+7$
- $y^2=41 x^6+12 x^5+5 x^4+43 x^3+51 x^2+7 x+36$
- $y^2=27 x^6+13 x^5+46 x^4+32 x^3+46 x^2+13 x+27$
- $y^2=17 x^6+39 x^5+36 x^4+18 x^3+12 x^2+24 x+5$
- $y^2=56 x^6+51 x^5+27 x^4+45 x^3+11 x^2+23 x+3$
- $y^2=6 x^6+53 x^5+17 x^4+54 x^3+7 x^2+49 x+18$
- $y^2=10 x^6+31 x^5+50 x^4+52 x^3+37 x^2+44 x+54$
- $y^2=18 x^6+19 x^5+21 x^4+5 x^3+10 x^2+45 x+43$
- $y^2=58 x^6+16 x^5+41 x^4+16 x^3+41 x^2+16 x+58$
- $y^2=17 x^6+x^5+43 x^4+23 x^3+33 x^2+22 x+3$
- $y^2=2 x^6+29 x^5+11 x^4+10 x^3+8 x^2+46 x+52$
- $y^2=6 x^6+21 x^5+52 x^4+35 x^3+37 x^2+20 x+42$
- $y^2=x^6+35 x^5+13 x^4+4 x^3+14 x^2+50 x+14$
- $y^2=38 x^6+33 x^5+6 x^4+41 x^3+14 x^2+42 x+2$
- $y^2=39 x^6+46 x^5+x^4+30 x^3+49 x^2+57 x+58$
- $y^2=44 x^6+18 x^5+x^4+3 x^3+37 x^2+38 x+33$
- $y^2=23 x^6+41 x^5+2 x^4+20 x^3+19 x^2+56 x+58$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$The isogeny class factors as 1.59.ap $\times$ 1.59.aj and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.59.ag_ar | $2$ | (not in LMFDB) |
2.59.g_ar | $2$ | (not in LMFDB) |
2.59.y_jt | $2$ | (not in LMFDB) |