-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 2295, 'abvar_counts': [2295, 11876625, 42209897040, 146843838545625, 511098549913977975, 1779178716355027104000, 6193378413722304475846335, 21559176974606113830896195625, 75047498139368285830810397267280, 261240336651027819035100888257540625], 'abvar_counts_str': '2295 11876625 42209897040 146843838545625 511098549913977975 1779178716355027104000 6193378413722304475846335 21559176974606113830896195625 75047498139368285830810397267280 261240336651027819035100888257540625 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.0692665268585578, 0.300760731311381], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 36, 'curve_counts': [36, 3412, 205524, 12118468, 714898836, 42180090262, 2488648350924, 146830434658948, 8662996001655756, 511116755543649652], 'curve_counts_str': '36 3412 205524 12118468 714898836 42180090262 2488648350924 146830434658948 8662996001655756 511116755543649652 ', 'curves': ['y^2=25*x^6+35*x^5+11*x^4+29*x^3+33*x^2+20*x+26', 'y^2=34*x^6+24*x^5+38*x^4+38*x^3+19*x^2+20*x+18', 'y^2=58*x^6+53*x^5+43*x^4+49*x^3+30*x^2+25*x+18', 'y^2=50*x^6+10*x^5+40*x^4+25*x^3+7*x^2+30*x+29', 'y^2=52*x^6+55*x^5+16*x^4+21*x^3+34*x^2+34*x+42', 'y^2=23*x^6+33*x^5+48*x^4+16*x^3+9*x^2+6', 'y^2=32*x^6+14*x^5+x^4+41*x^3+7*x^2+35*x+24', 'y^2=52*x^6+22*x^5+57*x^4+14*x^3+12*x^2+25*x+37', 'y^2=58*x^6+20*x^5+44*x^4+33*x^3+11*x^2+54*x+58', 'y^2=40*x^6+6*x^5+22*x^4+45*x^3+19*x^2+33*x+13', 'y^2=42*x^6+49*x^5+43*x^4+57*x^3+23*x^2+x+23', 'y^2=17*x^6+7*x^5+35*x^4+54*x^3+26*x^2+9*x+7', 'y^2=41*x^6+12*x^5+5*x^4+43*x^3+51*x^2+7*x+36', 'y^2=27*x^6+13*x^5+46*x^4+32*x^3+46*x^2+13*x+27', 'y^2=17*x^6+39*x^5+36*x^4+18*x^3+12*x^2+24*x+5', 'y^2=56*x^6+51*x^5+27*x^4+45*x^3+11*x^2+23*x+3', 'y^2=6*x^6+53*x^5+17*x^4+54*x^3+7*x^2+49*x+18', 'y^2=10*x^6+31*x^5+50*x^4+52*x^3+37*x^2+44*x+54', 'y^2=18*x^6+19*x^5+21*x^4+5*x^3+10*x^2+45*x+43', 'y^2=58*x^6+16*x^5+41*x^4+16*x^3+41*x^2+16*x+58', 'y^2=17*x^6+x^5+43*x^4+23*x^3+33*x^2+22*x+3', 'y^2=2*x^6+29*x^5+11*x^4+10*x^3+8*x^2+46*x+52', 'y^2=6*x^6+21*x^5+52*x^4+35*x^3+37*x^2+20*x+42', 'y^2=x^6+35*x^5+13*x^4+4*x^3+14*x^2+50*x+14', 'y^2=38*x^6+33*x^5+6*x^4+41*x^3+14*x^2+42*x+2', 'y^2=39*x^6+46*x^5+x^4+30*x^3+49*x^2+57*x+58', 'y^2=44*x^6+18*x^5+x^4+3*x^3+37*x^2+38*x+33', 'y^2=23*x^6+41*x^5+2*x^4+20*x^3+19*x^2+56*x+58'], 'dim1_distinct': 2, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 8, 'g': 2, 'galois_groups': ['2T1', '2T1'], 'geom_dim1_distinct': 2, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1', '2T1'], 'geometric_number_fields': ['2.0.11.1', '2.0.155.1'], 'geometric_splitting_field': '4.0.2907025.3', 'geometric_splitting_polynomials': [[1296, 0, 83, 0, 1]], 'group_structure_count': 2, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 28, 'is_geometrically_simple': False, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': False, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 28, 'label': '2.59.ay_jt', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.11.1', '2.0.155.1'], 'p': 59, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, -24, 253, -1416, 3481], 'poly_str': '1 -24 253 -1416 3481 ', 'primitive_models': [], 'q': 59, 'real_poly': [1, -24, 135], 'simple_distinct': ['1.59.ap', '1.59.aj'], 'simple_factors': ['1.59.apA', '1.59.ajA'], 'simple_multiplicities': [1, 1], 'singular_primes': ['3,-13*F+8', '3,-5*V+52', '2,F-V+9'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.2907025.3', 'splitting_polynomials': [[1296, 0, 83, 0, 1]], 'twist_count': 4, 'twists': [['2.59.ag_ar', '2.3481.acs_eln', 2], ['2.59.g_ar', '2.3481.acs_eln', 2], ['2.59.y_jt', '2.3481.acs_eln', 2]], 'weak_equivalence_count': 8, 'zfv_index': 36, 'zfv_index_factorization': [[2, 2], [3, 2]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 1705, 'zfv_singular_count': 6, 'zfv_singular_primes': ['3,-13*F+8', '3,-5*V+52', '2,F-V+9']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 52753
{'base_label': '2.59.ay_jt', 'extension_degree': 1, 'extension_label': '1.59.ap', 'multiplicity': 1}
-
id: 52754
{'base_label': '2.59.ay_jt', 'extension_degree': 1, 'extension_label': '1.59.aj', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.11.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.59.ap', 'galois_group': '2T1', 'places': [['51', '1'], ['7', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.155.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.59.aj', 'galois_group': '2T1', 'places': [['54', '1'], ['4', '1']]}