Properties

Label 2.59.a_abv
Base field $\F_{59}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{59}$
Dimension:  $2$
L-polynomial:  $1 - 47 x^{2} + 3481 x^{4}$
Frobenius angles:  $\pm0.184799267168$, $\pm0.815200732832$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-71}, \sqrt{165})\)
Galois group:  $C_2^2$
Jacobians:  $104$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3435$ $11799225$ $42180920640$ $146945672073225$ $511116752030755875$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $60$ $3388$ $205380$ $12126868$ $714924300$ $42181307638$ $2488651484820$ $146830440891748$ $8662995818654940$ $511116750760870348$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 104 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{59^{2}}$.

Endomorphism algebra over $\F_{59}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-71}, \sqrt{165})\).
Endomorphism algebra over $\overline{\F}_{59}$
The base change of $A$ to $\F_{59^{2}}$ is 1.3481.abv 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-11715}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.a_bv$4$(not in LMFDB)