# Stored data for abelian variety isogeny class 2.59.a_abv, downloaded from the LMFDB on 05 October 2025. {"abvar_count": 3435, "abvar_counts": [3435, 11799225, 42180920640, 146945672073225, 511116752030755875, 1779230066037978009600, 6193386212893159758900315, 21559177889770896936251361225, 75047496554032965748877065738560, 261240334206469189870781923847015625], "abvar_counts_str": "3435 11799225 42180920640 146945672073225 511116752030755875 1779230066037978009600 6193386212893159758900315 21559177889770896936251361225 75047496554032965748877065738560 261240334206469189870781923847015625 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.18479926716789, 0.81520073283211], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 60, "curve_counts": [60, 3388, 205380, 12126868, 714924300, 42181307638, 2488651484820, 146830440891748, 8662995818654940, 511116750760870348], "curve_counts_str": "60 3388 205380 12126868 714924300 42181307638 2488651484820 146830440891748 8662995818654940 511116750760870348 ", "curves": ["y^2=24*x^6+38*x^5+36*x^4+43*x^3+56*x^2+27*x+19", "y^2=48*x^6+17*x^5+13*x^4+27*x^3+53*x^2+54*x+38", "y^2=23*x^6+37*x^5+31*x^4+25*x^3+9*x^2+56*x+58", "y^2=46*x^6+15*x^5+3*x^4+50*x^3+18*x^2+53*x+57", "y^2=39*x^6+36*x^5+52*x^4+32*x^3+51*x^2+15*x+1", "y^2=19*x^6+13*x^5+45*x^4+5*x^3+43*x^2+30*x+2", "y^2=35*x^6+43*x^5+23*x^4+46*x^3+27*x^2+34*x+31", "y^2=11*x^6+27*x^5+46*x^4+33*x^3+54*x^2+9*x+3", "y^2=12*x^6+18*x^5+11*x^4+39*x^3+5*x^2+32*x+24", "y^2=5*x^6+47*x^5+33*x^4+49*x^3+40*x^2+19*x+38", "y^2=10*x^6+35*x^5+7*x^4+39*x^3+21*x^2+38*x+17", "y^2=21*x^6+48*x^5+29*x^4+13*x^3+23*x^2+57*x+19", "y^2=42*x^6+37*x^5+58*x^4+26*x^3+46*x^2+55*x+38", "y^2=15*x^6+13*x^5+25*x^4+29*x^3+36*x^2+22*x+32", "y^2=30*x^6+26*x^5+50*x^4+58*x^3+13*x^2+44*x+5", "y^2=56*x^6+21*x^5+2*x^4+23*x^3+48*x^2+5*x+42", "y^2=53*x^6+42*x^5+4*x^4+46*x^3+37*x^2+10*x+25", "y^2=45*x^6+46*x^5+33*x^4+20*x^3+34*x^2+10*x+12", "y^2=31*x^6+33*x^5+7*x^4+40*x^3+9*x^2+20*x+24", "y^2=51*x^6+35*x^5+47*x^4+45*x^3+40*x^2+53*x+38", "y^2=43*x^6+11*x^5+35*x^4+31*x^3+21*x^2+47*x+17", "y^2=32*x^6+47*x^5+48*x^4+31*x^3+38*x^2+25*x+37", "y^2=5*x^6+35*x^5+37*x^4+3*x^3+17*x^2+50*x+15", "y^2=32*x^6+5*x^5+28*x^4+23*x^3+15*x^2+9*x+20", "y^2=5*x^6+10*x^5+56*x^4+46*x^3+30*x^2+18*x+40", "y^2=14*x^6+x^5+22*x^4+7*x^3+53*x^2+48*x+25", "y^2=28*x^6+2*x^5+44*x^4+14*x^3+47*x^2+37*x+50", "y^2=54*x^6+39*x^5+x^4+32*x^3+49*x^2+47*x+55", "y^2=49*x^6+19*x^5+2*x^4+5*x^3+39*x^2+35*x+51", "y^2=56*x^6+41*x^4+17*x^3+39*x^2+x+41", "y^2=53*x^6+23*x^4+34*x^3+19*x^2+2*x+23", "y^2=57*x^6+4*x^5+52*x^4+29*x^3+14*x^2+53*x+48", "y^2=55*x^6+8*x^5+45*x^4+58*x^3+28*x^2+47*x+37", "y^2=56*x^6+23*x^5+46*x^4+13*x^3+37*x^2+30*x+37", "y^2=53*x^6+46*x^5+33*x^4+26*x^3+15*x^2+x+15", "y^2=48*x^6+32*x^5+43*x^4+37*x^3+15*x^2+19*x+10", "y^2=37*x^6+5*x^5+27*x^4+15*x^3+30*x^2+38*x+20", "y^2=53*x^6+9*x^5+17*x^4+23*x^3+26*x^2+7*x+31", "y^2=47*x^6+18*x^5+34*x^4+46*x^3+52*x^2+14*x+3", "y^2=21*x^6+11*x^5+48*x^4+49*x^3+55*x^2+53*x+54", "y^2=42*x^6+22*x^5+37*x^4+39*x^3+51*x^2+47*x+49", "y^2=24*x^6+9*x^5+52*x^4+30*x^3+5*x^2+16*x+14", "y^2=48*x^6+18*x^5+45*x^4+x^3+10*x^2+32*x+28", "y^2=27*x^6+19*x^5+55*x^4+7*x^3+29*x^2+49*x+40", "y^2=54*x^6+38*x^5+51*x^4+14*x^3+58*x^2+39*x+21", "y^2=42*x^6+3*x^5+15*x^4+49*x^3+2*x^2+15*x+28", "y^2=16*x^6+34*x^5+15*x^4+8*x^3+34*x^2+27*x+45", "y^2=32*x^6+9*x^5+30*x^4+16*x^3+9*x^2+54*x+31", "y^2=7*x^6+36*x^4+42*x^3+22*x^2+14*x+12", "y^2=14*x^6+13*x^4+25*x^3+44*x^2+28*x+24", "y^2=17*x^6+28*x^5+25*x^4+26*x^3+47*x^2+21*x+15", "y^2=34*x^6+56*x^5+50*x^4+52*x^3+35*x^2+42*x+30", "y^2=41*x^6+23*x^5+17*x^4+53*x^3+28*x^2+43*x+4", "y^2=23*x^6+46*x^5+34*x^4+47*x^3+56*x^2+27*x+8", "y^2=3*x^6+52*x^5+39*x^4+15*x^3+9*x^2+39*x+25", "y^2=6*x^6+45*x^5+19*x^4+30*x^3+18*x^2+19*x+50", "y^2=37*x^6+33*x^5+4*x^4+46*x^3+36*x^2+57*x+18", "y^2=15*x^6+7*x^5+8*x^4+33*x^3+13*x^2+55*x+36", "y^2=54*x^6+5*x^5+55*x^4+6*x^3+x^2+12*x+36", "y^2=49*x^6+10*x^5+51*x^4+12*x^3+2*x^2+24*x+13", "y^2=2*x^6+57*x^5+32*x^4+29*x^3+7*x^2+15*x+17", "y^2=39*x^6+3*x^5+52*x^4+22*x^3+55*x^2+23", "y^2=19*x^6+6*x^5+45*x^4+44*x^3+51*x^2+46", "y^2=29*x^6+3*x^5+18*x^4+21*x^3+39*x^2+32*x+4", "y^2=58*x^6+6*x^5+36*x^4+42*x^3+19*x^2+5*x+8", "y^2=7*x^6+29*x^5+9*x^4+30*x^3+30*x^2+x+32", "y^2=53*x^6+37*x^5+19*x^4+53*x^3+58*x^2+43*x+35", "y^2=47*x^6+15*x^5+38*x^4+47*x^3+57*x^2+27*x+11", "y^2=26*x^6+25*x^5+28*x^4+40*x^3+3*x^2+55*x+20", "y^2=52*x^6+50*x^5+56*x^4+21*x^3+6*x^2+51*x+40", "y^2=10*x^6+55*x^5+7*x^4+38*x^3+52*x^2+55*x+49", "y^2=8*x^6+39*x^5+57*x^4+26*x^3+34*x^2+2*x+49", "y^2=22*x^6+24*x^5+18*x^4+46*x^3+x^2+31*x+16", "y^2=44*x^6+48*x^5+36*x^4+33*x^3+2*x^2+3*x+32", "y^2=47*x^6+5*x^5+38*x^4+53*x^3+35*x^2+49", "y^2=35*x^6+10*x^5+17*x^4+47*x^3+11*x^2+39", "y^2=42*x^6+38*x^4+32*x^3+46*x^2+19*x+30", "y^2=25*x^6+17*x^4+5*x^3+33*x^2+38*x+1", "y^2=6*x^6+42*x^5+10*x^4+29*x^3+21*x^2+53*x+54", "y^2=12*x^6+25*x^5+20*x^4+58*x^3+42*x^2+47*x+49", "y^2=23*x^6+49*x^5+32*x^4+42*x^3+38*x^2+40*x+35", "y^2=46*x^6+39*x^5+5*x^4+25*x^3+17*x^2+21*x+11", "y^2=5*x^6+51*x^5+45*x^4+19*x^3+33*x^2+26*x+24", "y^2=10*x^6+43*x^5+31*x^4+38*x^3+7*x^2+52*x+48", "y^2=44*x^6+27*x^5+44*x^4+48*x^3+29*x^2+22*x+50", "y^2=29*x^6+54*x^5+29*x^4+37*x^3+58*x^2+44*x+41", "y^2=13*x^6+12*x^5+47*x^4+20*x^3+34*x^2+44*x+29", "y^2=26*x^6+24*x^5+35*x^4+40*x^3+9*x^2+29*x+58", "y^2=14*x^6+12*x^5+53*x^4+21*x^3+14*x^2+26*x+21", "y^2=47*x^6+44*x^5+48*x^4+4*x^3+40*x^2+36*x+38", "y^2=35*x^6+29*x^5+37*x^4+8*x^3+21*x^2+13*x+17", "y^2=29*x^6+19*x^5+29*x^4+46*x^3+21*x^2+53*x+18", "y^2=58*x^6+38*x^5+58*x^4+33*x^3+42*x^2+47*x+36", "y^2=54*x^6+54*x^5+34*x^4+43*x^3+57*x^2+36*x+28", "y^2=49*x^6+49*x^5+9*x^4+27*x^3+55*x^2+13*x+56", "y^2=50*x^6+12*x^5+26*x^4+55*x^3+7*x^2+9*x+7", "y^2=41*x^6+24*x^5+52*x^4+51*x^3+14*x^2+18*x+14", "y^2=58*x^6+44*x^5+44*x^4+23*x^3+27*x^2+34*x+3", "y^2=31*x^6+42*x^5+10*x^4+15*x^3+57*x^2+57*x+19", "y^2=3*x^6+25*x^5+20*x^4+30*x^3+55*x^2+55*x+38", "y^2=15*x^6+15*x^5+8*x^4+32*x^3+41*x^2+11*x+51", "y^2=30*x^6+30*x^5+16*x^4+5*x^3+23*x^2+22*x+43", "y^2=15*x^6+44*x^5+11*x^4+6*x^3+49*x^2+16*x+24", "y^2=30*x^6+29*x^5+22*x^4+12*x^3+39*x^2+32*x+48"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 2, "g": 2, "galois_groups": ["4T2"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 2, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.11715.1"], "geometric_splitting_field": "2.0.11715.1", "geometric_splitting_polynomials": [[2929, -1, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 104, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 104, "label": "2.59.a_abv", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 4, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.137241225.1"], "p": 59, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 0, -47, 0, 3481], "poly_str": "1 0 -47 0 3481 ", "primitive_models": [], "q": 59, "real_poly": [1, 0, -165], "simple_distinct": ["2.59.a_abv"], "simple_factors": ["2.59.a_abvA"], "simple_multiplicities": [1], "singular_primes": ["2,3*F+V-9"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.137241225.1", "splitting_polynomials": [[3481, 0, -47, 0, 1]], "twist_count": 2, "twists": [["2.59.a_bv", "2.12117361.obq_dymevr", 4]], "weak_equivalence_count": 2, "zfv_index": 4, "zfv_index_factorization": [[2, 2]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_plus_index": 2, "zfv_plus_index_factorization": [[2, 1]], "zfv_plus_norm": 5041, "zfv_singular_count": 2, "zfv_singular_primes": ["2,3*F+V-9"]}