Invariants
Base field: | $\F_{47}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 12 x + 47 x^{2} )( 1 + 8 x + 47 x^{2} )$ |
$1 - 4 x - 2 x^{2} - 188 x^{3} + 2209 x^{4}$ | |
Frobenius angles: | $\pm0.160736311100$, $\pm0.698301488982$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $246$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2016$ | $4838400$ | $10711751904$ | $23837829120000$ | $52604984681708256$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $44$ | $2190$ | $103172$ | $4885118$ | $229370524$ | $10779249870$ | $506625771892$ | $23811290125438$ | $1119130442389004$ | $52599132542071950$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 246 curves (of which all are hyperelliptic):
- $y^2=25 x^6+21 x^5+8 x^4+15 x^3+32 x^2+12 x+41$
- $y^2=12 x^5+12 x^4+14 x^3+38 x^2+12 x+30$
- $y^2=33 x^6+10 x^5+x^4+10 x^3+x^2+10 x+33$
- $y^2=26 x^6+41 x^5+16 x^4+37 x^3+44 x^2+5 x+46$
- $y^2=37 x^6+18 x^5+30 x^4+16 x^3+2 x^2+8 x+17$
- $y^2=28 x^6+35 x^5+28 x^4+15 x^3+4 x^2+28 x+8$
- $y^2=34 x^6+7 x^5+18 x^4+11 x^3+19 x^2+35 x+11$
- $y^2=8 x^6+31 x^5+32 x^4+43 x^3+28 x^2+38$
- $y^2=15 x^6+5 x^5+6 x^4+43 x^3+9 x^2+10 x+37$
- $y^2=15 x^6+46 x^5+26 x^4+x^3+34 x^2+15 x+1$
- $y^2=15 x^6+29 x^5+6 x^4+4 x^3+16 x^2+6 x+46$
- $y^2=12 x^6+x^5+2 x^4+43 x^3+10 x^2+15 x+24$
- $y^2=x^6+36 x^5+3 x^4+35 x^3+37 x^2+17 x+46$
- $y^2=15 x^6+9 x^5+37 x^4+40 x^3+34 x^2+33 x+11$
- $y^2=13 x^6+36 x^5+28 x^4+34 x^3+13 x^2+35 x+44$
- $y^2=38 x^6+44 x^5+33 x^4+14 x^3+33 x^2+44 x+38$
- $y^2=26 x^6+33 x^5+4 x^4+12 x^3+x^2+40 x$
- $y^2=13 x^6+39 x^5+9 x^4+32 x^3+9 x^2+24 x+44$
- $y^2=46 x^6+5 x^5+27 x^4+3 x^3+42 x^2+19 x+2$
- $y^2=16 x^6+46 x^5+43 x^4+13 x^3+2 x^2+17 x+2$
- and 226 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47}$.
Endomorphism algebra over $\F_{47}$The isogeny class factors as 1.47.am $\times$ 1.47.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.47.au_hi | $2$ | (not in LMFDB) |
2.47.e_ac | $2$ | (not in LMFDB) |
2.47.u_hi | $2$ | (not in LMFDB) |