# Stored data for abelian variety isogeny class 2.47.ae_ac, downloaded from the LMFDB on 11 September 2025. {"abvar_count": 2016, "abvar_counts": [2016, 4838400, 10711751904, 23837829120000, 52604984681708256, 116191855409151513600, 256668329465165102383584, 566977454963171156459520000, 1252452981454515626180785852896, 2766668728070394039372991378560000], "abvar_counts_str": "2016 4838400 10711751904 23837829120000 52604984681708256 116191855409151513600 256668329465165102383584 566977454963171156459520000 1252452981454515626180785852896 2766668728070394039372991378560000 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.160736311099588, 0.698301488981845], "center_dim": 4, "cohen_macaulay_max": 3, "curve_count": 44, "curve_counts": [44, 2190, 103172, 4885118, 229370524, 10779249870, 506625771892, 23811290125438, 1119130442389004, 52599132542071950], "curve_counts_str": "44 2190 103172 4885118 229370524 10779249870 506625771892 23811290125438 1119130442389004 52599132542071950 ", "curves": ["y^2=25*x^6+21*x^5+8*x^4+15*x^3+32*x^2+12*x+41", "y^2=12*x^5+12*x^4+14*x^3+38*x^2+12*x+30", "y^2=33*x^6+10*x^5+x^4+10*x^3+x^2+10*x+33", "y^2=26*x^6+41*x^5+16*x^4+37*x^3+44*x^2+5*x+46", "y^2=37*x^6+18*x^5+30*x^4+16*x^3+2*x^2+8*x+17", "y^2=28*x^6+35*x^5+28*x^4+15*x^3+4*x^2+28*x+8", "y^2=34*x^6+7*x^5+18*x^4+11*x^3+19*x^2+35*x+11", "y^2=8*x^6+31*x^5+32*x^4+43*x^3+28*x^2+38", "y^2=15*x^6+5*x^5+6*x^4+43*x^3+9*x^2+10*x+37", "y^2=15*x^6+46*x^5+26*x^4+x^3+34*x^2+15*x+1", "y^2=15*x^6+29*x^5+6*x^4+4*x^3+16*x^2+6*x+46", "y^2=12*x^6+x^5+2*x^4+43*x^3+10*x^2+15*x+24", "y^2=x^6+36*x^5+3*x^4+35*x^3+37*x^2+17*x+46", "y^2=15*x^6+9*x^5+37*x^4+40*x^3+34*x^2+33*x+11", "y^2=13*x^6+36*x^5+28*x^4+34*x^3+13*x^2+35*x+44", "y^2=38*x^6+44*x^5+33*x^4+14*x^3+33*x^2+44*x+38", "y^2=26*x^6+33*x^5+4*x^4+12*x^3+x^2+40*x", "y^2=13*x^6+39*x^5+9*x^4+32*x^3+9*x^2+24*x+44", "y^2=46*x^6+5*x^5+27*x^4+3*x^3+42*x^2+19*x+2", "y^2=16*x^6+46*x^5+43*x^4+13*x^3+2*x^2+17*x+2", "y^2=9*x^6+33*x^4+27*x^3+33*x^2+9", "y^2=17*x^6+27*x^5+35*x^4+8*x^3+26*x^2+39*x+15", "y^2=19*x^6+18*x^5+5*x^4+6*x^3+31*x^2+26*x+27", "y^2=31*x^6+x^5+25*x^4+42*x^3+12*x^2+12*x+8", "y^2=20*x^6+8*x^5+3*x^4+16*x^3+8*x^2+36*x+5", "y^2=46*x^6+23*x^5+23*x^4+40*x^3+38*x^2+37*x+13", "y^2=15*x^6+34*x^5+32*x^4+15*x^3+18*x^2+5*x+22", "y^2=20*x^6+30*x^5+27*x^4+41*x^3+25*x^2+40*x+40", "y^2=30*x^6+32*x^5+27*x^4+2*x^3+26*x^2+23*x+21", "y^2=x^6+42*x^5+32*x^4+13*x^3+31*x^2+45*x+22", "y^2=10*x^6+15*x^5+20*x^4+11*x^3+x^2+2*x+11", "y^2=5*x^6+2*x^5+13*x^4+17*x^2+25*x", "y^2=31*x^6+30*x^5+31*x^4+22*x^3+15*x^2+26*x+13", "y^2=28*x^6+41*x^5+14*x^4+26*x^3+8*x^2+28*x+43", "y^2=16*x^6+44*x^5+45*x^4+5*x^3+26*x^2+34*x+42", "y^2=2*x^6+21*x^4+11*x^3+18*x^2+33*x+28", "y^2=38*x^6+43*x^5+35*x^4+37*x^3+34*x+19", "y^2=33*x^6+38*x^5+25*x^4+27*x^3+18*x^2+x+8", "y^2=32*x^6+42*x^5+23*x^4+4*x^3+26*x^2+20*x+9", "y^2=38*x^6+20*x^5+41*x^4+46*x^3+40*x^2+22*x+19", "y^2=22*x^6+3*x^5+11*x^4+17*x^3+44*x^2+12*x+30", "y^2=29*x^6+19*x^5+36*x^4+10*x^3+12*x^2+11*x+20", "y^2=43*x^6+30*x^5+2*x^4+41*x^3+6*x^2+x+7", "y^2=20*x^6+41*x^5+13*x^4+12*x^3+17*x^2+4*x+46", "y^2=10*x^6+18*x^5+35*x^4+17*x^3+41*x^2+28*x+13", "y^2=39*x^6+14*x^5+37*x^3+42*x^2+38*x+44", "y^2=35*x^6+7*x^5+20*x^4+3*x^3+21*x^2+3*x+44", "y^2=12*x^6+42*x^5+32*x^4+41*x^3+26*x^2+32*x+39", "y^2=29*x^6+39*x^5+16*x^4+26*x^3+34*x^2+19*x+30", "y^2=38*x^6+22*x^5+18*x^4+46*x^3+27*x^2+15*x+8", "y^2=10*x^6+22*x^5+14*x^4+22*x^3+40*x^2+39*x+46", "y^2=11*x^6+13*x^5+19*x^4+26*x^3+15*x^2+40*x+33", "y^2=11*x^6+34*x^5+30*x^4+19*x^3+27*x^2+18*x+1", "y^2=27*x^6+18*x^5+19*x^4+28*x^3+34*x^2+28*x+11", "y^2=10*x^6+40*x^5+36*x^4+9*x^3+3*x^2+29*x+29", "y^2=44*x^6+16*x^5+29*x^4+9*x^3+27*x^2+14*x+36", "y^2=21*x^6+21*x^5+16*x^4+38*x^3+18*x^2+23*x+22", "y^2=24*x^6+11*x^5+16*x^4+18*x^3+16*x^2+x+35", "y^2=6*x^6+23*x^5+9*x^4+46*x^3+x^2+22*x+46", "y^2=12*x^6+x^5+11*x^4+42*x^3+21*x^2+13*x+39", "y^2=30*x^6+39*x^4+13*x^3+22*x^2+39*x+17", "y^2=24*x^6+37*x^5+14*x^4+7*x^3+3*x^2+23*x+9", "y^2=29*x^6+36*x^5+39*x^4+32*x^3+31*x^2+26*x+27", "y^2=36*x^6+39*x^5+44*x^4+25*x^3+44*x^2+39*x+36", "y^2=36*x^6+12*x^5+x^4+21*x^3+46*x+22", "y^2=28*x^6+38*x^5+42*x^4+10*x^3+17*x^2+32*x+46", "y^2=3*x^6+41*x^5+37*x^4+2*x^3+29*x^2+40*x+8", "y^2=33*x^6+3*x^5+10*x^4+37*x^3+14*x^2+35*x+46", "y^2=6*x^6+42*x^5+39*x^4+39*x^3+12*x^2+6*x+11", "y^2=24*x^6+29*x^5+37*x^4+22*x^3+4*x^2+33*x+5", "y^2=4*x^6+5*x^5+4*x^4+x^3+4*x^2+5*x+4", "y^2=17*x^6+31*x^5+42*x^4+9*x^3+37*x^2+30*x+42", "y^2=19*x^6+44*x^5+21*x^4+28*x^3+42*x^2+35*x+11", "y^2=15*x^6+40*x^5+21*x^4+10*x^3+19*x^2+17*x+15", "y^2=41*x^6+13*x^5+32*x^4+38*x^3+23*x^2+10*x+30", "y^2=2*x^6+26*x^5+11*x^4+31*x^3+11*x^2+26*x+2", "y^2=30*x^6+4*x^5+33*x^4+16*x^3+13*x^2+6*x+21", "y^2=45*x^6+9*x^5+43*x^4+28*x^3+3*x^2+30*x+20", "y^2=5*x^6+27*x^5+25*x^4+8*x^3+33*x^2+10*x+33", "y^2=36*x^6+35*x^5+17*x^4+35*x^3+7*x^2+42*x+39", "y^2=15*x^6+37*x^5+4*x^4+20*x^3+4*x^2+37*x+15", "y^2=17*x^6+3*x^5+38*x^4+24*x^3+11*x^2+9*x+39", "y^2=15*x^6+34*x^5+29*x^4+14*x^3+36*x^2+37*x+17", "y^2=23*x^6+5*x^5+6*x^4+36*x^3+3*x^2+19*x+4", "y^2=15*x^6+32*x^5+44*x^4+23*x^3+38*x^2+26*x+8", "y^2=44*x^6+31*x^5+9*x^4+12*x^3+9*x^2+31*x+44", "y^2=11*x^6+37*x^5+22*x^4+33*x^3+37*x^2+33*x+8", "y^2=23*x^6+15*x^5+19*x^4+20*x^3+10*x^2+9*x+39", "y^2=2*x^6+42*x^5+38*x^4+6*x^3+15*x^2+7*x+36", "y^2=4*x^6+7*x^5+13*x^4+8*x^3+29*x^2+40*x+28", "y^2=29*x^6+4*x^5+9*x^4+16*x^3+2*x^2+6*x+11", "y^2=25*x^6+46*x^5+2*x^4+20*x^3+4*x^2+4*x+33", "y^2=18*x^6+6*x^5+4*x^4+9*x^3+29*x^2+42*x+21", "y^2=13*x^6+36*x^5+25*x^4+8*x^3+7*x^2+41*x+35", "y^2=18*x^6+6*x^5+7*x^4+2*x^3+14*x^2+2*x+33", "y^2=28*x^6+25*x^5+21*x^4+29*x^3+43*x^2+5*x+42", "y^2=7*x^6+28*x^5+18*x^4+19*x^3+28*x^2+37*x+17", "y^2=24*x^6+23*x^5+14*x^4+2*x^3+37*x^2+36*x+23", "y^2=31*x^6+25*x^5+29*x^4+2*x^3+14*x^2+35*x+40", "y^2=11*x^6+7*x^5+6*x^4+12*x^3+38*x^2+34*x+45", "y^2=2*x^6+45*x^5+36*x^4+11*x^3+45*x^2+18*x+17", "y^2=28*x^6+35*x^5+40*x^4+9*x^3+40*x^2+35*x+28", "y^2=4*x^6+29*x^5+40*x^4+41*x^3+10*x^2+11*x+17", "y^2=10*x^6+35*x^5+19*x^4+3*x^3+36*x^2+45*x+36", "y^2=21*x^6+27*x^4+10*x^3+8*x^2+14*x+8", "y^2=5*x^6+39*x^5+11*x^4+26*x^3+19*x^2+18*x+24", "y^2=44*x^6+39*x^5+34*x^4+2*x^3+21*x^2+21*x+36", "y^2=17*x^6+41*x^5+12*x^4+30*x^3+4*x^2+37", "y^2=13*x^6+x^5+27*x^4+21*x^3+46*x^2+32*x+18", "y^2=8*x^6+28*x^5+26*x^4+26*x^3+26*x^2+28*x+8", "y^2=14*x^6+45*x^5+31*x^4+10*x^3+x^2+42*x+34", "y^2=31*x^6+40*x^5+31*x^4+23*x^3+18*x^2+45*x+33", "y^2=22*x^6+14*x^5+x^4+27*x^3+16*x^2+15*x+44", "y^2=7*x^6+43*x^5+12*x^4+3*x^3+9*x^2+x+3", "y^2=46*x^6+12*x^5+39*x^4+9*x^3+38*x^2+37*x+12", "y^2=x^6+35*x^5+21*x^4+2*x^3+2*x^2+36*x+3", "y^2=23*x^6+38*x^5+5*x^4+5*x^3+22*x+23", "y^2=x^6+45*x^5+38*x^4+38*x^3+12*x^2+39*x+7", "y^2=31*x^6+6*x^5+45*x^4+x^3+7*x+41", "y^2=42*x^6+14*x^5+27*x^4+19*x^3+33*x^2+6*x+40", "y^2=36*x^6+7*x^5+12*x^4+29*x^3+7*x^2+42*x+46", "y^2=28*x^6+39*x^5+26*x^4+20*x^3+10*x^2+13*x+4", "y^2=12*x^6+38*x^5+11*x^4+4*x^3+43*x^2+15*x+22", "y^2=6*x^6+42*x^5+9*x^4+45*x^3+36*x^2+6*x+45", "y^2=36*x^6+6*x^5+9*x^4+42*x^3+42*x^2+38*x+15", "y^2=12*x^6+7*x^5+25*x^4+32*x^3+4*x^2+17*x+20", "y^2=23*x^6+3*x^5+3*x^4+33*x^3+35*x^2+2", "y^2=37*x^6+9*x^5+21*x^4+34*x^3+22*x^2+24*x+26", "y^2=11*x^6+13*x^5+19*x^4+31*x^3+5*x^2+39*x+7", "y^2=20*x^6+4*x^5+3*x^4+26*x^3+8*x^2+27*x+46", "y^2=18*x^6+4*x^5+29*x^4+4*x^3+42*x^2+29*x+25", "y^2=18*x^6+18*x^5+33*x^4+12*x^3+19*x^2+25*x+3", "y^2=12*x^6+x^5+17*x^4+37*x^3+39*x^2+36*x+13", "y^2=31*x^6+15*x^5+11*x^4+40*x^3+11*x^2+15*x+31", "y^2=26*x^6+41*x^5+22*x^4+5*x^3+28*x^2+12*x+2", "y^2=34*x^6+4*x^5+42*x^4+45*x^3+21*x^2+x+36", "y^2=3*x^6+8*x^5+28*x^4+x^3+31*x^2+8*x+18", "y^2=30*x^6+22*x^5+27*x^4+x^3+7*x^2+x+13", "y^2=28*x^6+39*x^5+7*x^4+42*x^3+41*x^2+7*x", "y^2=43*x^6+35*x^5+7*x^4+44*x^3+4*x^2+35*x+35", "y^2=2*x^6+14*x^5+20*x^4+17*x^3+10*x^2+13*x+18", "y^2=24*x^6+24*x^5+19*x^4+9*x^3+37*x^2+29*x+29", "y^2=33*x^6+33*x^5+19*x^4+27*x^2+2*x+35", "y^2=26*x^6+21*x^4+10*x^3+5*x^2+26*x+21", "y^2=46*x^6+43*x^5+45*x^4+42*x^3+13*x^2+4*x+8", "y^2=14*x^6+29*x^5+6*x^4+25*x^3+18*x^2+11*x+21", "y^2=30*x^6+15*x^5+37*x^4+45*x^2+31*x+45", "y^2=13*x^6+42*x^5+37*x^4+33*x^3+28*x^2+42*x+9", "y^2=15*x^6+2*x^5+7*x^4+19*x^3+41*x^2+11*x+17", "y^2=33*x^6+13*x^5+30*x^4+5*x^3+4*x^2+34*x+4", "y^2=2*x^6+35*x^5+6*x^4+9*x^3+6*x^2+35*x+2", "y^2=17*x^6+40*x^5+17*x^4+14*x^3+38*x^2+17*x+8", "y^2=45*x^6+41*x^5+26*x^4+23*x^3+18*x^2+3*x+23", "y^2=11*x^6+11*x^5+44*x^4+28*x^3+13*x^2+8*x", "y^2=22*x^6+23*x^5+38*x^4+18*x^3+x^2+39*x+2", "y^2=30*x^6+13*x^5+43*x^4+9*x^3+43*x^2+13*x+30", "y^2=31*x^6+18*x^5+34*x^4+22*x^3+21*x^2+21*x+5", "y^2=2*x^6+6*x^5+35*x^4+3*x^3+39*x^2+37", "y^2=42*x^6+9*x^5+4*x^4+44*x^3+25*x^2+21*x+44", "y^2=41*x^6+30*x^5+4*x^4+38*x^3+45*x^2+32*x+46", "y^2=18*x^6+22*x^5+42*x^4+33*x^3+13*x^2+26*x+7", "y^2=2*x^5+16*x^4+41*x^3+11*x^2+14*x+30", "y^2=24*x^6+16*x^5+21*x^4+28*x^3+38*x^2+37*x+28", "y^2=23*x^6+3*x^5+9*x^4+10*x^2+5*x+22", "y^2=23*x^5+18*x^4+8*x^3+18*x^2+11*x+2", "y^2=30*x^6+24*x^5+24*x^4+40*x^3+41*x^2+7*x+36", "y^2=8*x^6+42*x^5+21*x^4+5*x^3+38*x^2+41*x+43", "y^2=3*x^6+13*x^5+42*x^4+14*x^3+23*x+21", "y^2=7*x^6+4*x^5+31*x^4+x^3+27*x^2+15*x", "y^2=19*x^6+24*x^5+34*x^4+2*x^3+11*x^2+2*x+17", "y^2=26*x^6+x^5+5*x^4+7*x^3+10*x^2+4*x+20", "y^2=34*x^6+21*x^5+40*x^4+17*x^3+4*x^2+26*x+45", "y^2=31*x^6+13*x^5+42*x^4+18*x^3+43", "y^2=38*x^6+23*x^4+39*x^3+7*x^2+3*x+36", "y^2=3*x^6+24*x^5+33*x^4+16*x^3+13*x^2+20*x+31", "y^2=33*x^6+14*x^5+44*x^4+44*x^3+29*x^2+34*x+31", "y^2=13*x^6+7*x^5+25*x^4+39*x^3+15*x^2+36*x+29", "y^2=23*x^6+10*x^5+33*x^4+25*x^3+36*x^2+27*x", "y^2=30*x^6+20*x^5+11*x^4+12*x^3+13*x^2+45*x+43", "y^2=21*x^5+33*x^4+41*x^3+3*x^2+20*x+20", "y^2=14*x^6+3*x^5+41*x^4+28*x^3+42*x^2+16*x+44", "y^2=12*x^6+10*x^5+8*x^4+12*x^3+2*x^2+27*x+30", "y^2=25*x^6+x^5+35*x^4+30*x^3+3*x^2+4*x+1", "y^2=39*x^6+29*x^4+20*x^3+8*x^2+18*x+23", "y^2=13*x^5+25*x^4+44*x^3+31*x^2+30*x+27", "y^2=39*x^6+x^5+6*x^4+46*x^3+46*x^2+45*x+15", "y^2=19*x^6+45*x^5+22*x^4+29*x^3+x^2+28*x+27", "y^2=27*x^6+8*x^5+10*x^4+13*x^3+9*x^2+34*x+4", "y^2=27*x^6+34*x^4+8*x^3+x^2+45*x+14", "y^2=27*x^6+30*x^5+17*x^4+32*x^3+16*x^2+8*x+24", "y^2=29*x^6+36*x^5+30*x^4+33*x^2+38*x+41", "y^2=23*x^6+5*x^5+25*x^4+2*x^3+42*x^2+19*x+22", "y^2=4*x^6+24*x^5+32*x^4+21*x^3+38*x^2+17*x+3", "y^2=2*x^6+28*x^5+3*x^4+37*x^3+42*x^2+36*x+36", "y^2=x^6+37*x^5+23*x^4+43*x^3+28*x^2+33*x+3", "y^2=12*x^6+17*x^5+36*x^4+x^3+27*x^2+5*x+18", "y^2=39*x^6+9*x^5+6*x^4+14*x^3+21*x^2+28*x+33", "y^2=4*x^6+10*x^5+2*x^4+4*x^3+19*x^2+14*x+7", "y^2=40*x^6+19*x^5+42*x^4+38*x^3+25*x^2+9*x+31", "y^2=44*x^6+20*x^5+12*x^4+28*x^3+5*x^2+15*x+24", "y^2=24*x^6+4*x^5+11*x^4+27*x^2+11*x+32", "y^2=38*x^6+42*x^5+22*x^4+17*x^3+24*x^2+40*x+5", "y^2=44*x^6+16*x^5+21*x^4+43*x^3+7*x^2+12*x+38", "y^2=45*x^6+32*x^5+29*x^4+10*x^3+16*x^2+42*x+18", "y^2=41*x^6+22*x^5+5*x^4+4*x^3+8*x^2+14*x+12", "y^2=45*x^6+46*x^5+12*x^4+13*x^3+12*x^2+46*x+45", "y^2=9*x^6+29*x^5+16*x^4+28*x^3+15*x^2+24*x+32", "y^2=41*x^6+4*x^5+37*x^4+19*x^3+33*x^2+19*x+1", "y^2=19*x^6+30*x^5+7*x^4+34*x^3+35*x^2+12*x+2", "y^2=26*x^6+8*x^5+42*x^4+35*x^3+34*x^2+15*x+34", "y^2=27*x^6+46*x^5+9*x^4+43*x^3+23*x^2+16*x+40", "y^2=15*x^6+25*x^5+37*x^4+24*x^3+28*x^2+42", "y^2=15*x^6+28*x^5+45*x^4+10*x^3+35*x^2+19*x+1", "y^2=15*x^6+23*x^5+19*x^4+34*x^3+31*x^2+43*x+35", "y^2=20*x^5+22*x^4+15*x^3+2*x^2+x+31", "y^2=46*x^6+41*x^4+27*x^3+19*x^2+23*x+2", "y^2=9*x^6+29*x^5+14*x^4+29*x^3+41*x^2+16*x+16", "y^2=9*x^6+28*x^5+42*x^4+22*x^3+8*x^2+36*x+22", "y^2=2*x^6+4*x^5+20*x^4+29*x^2+x+17", "y^2=40*x^6+4*x^5+14*x^4+13*x^3+18*x^2+2*x+30", "y^2=33*x^6+32*x^5+11*x^3+27*x^2+40*x+45", "y^2=6*x^6+33*x^5+22*x^4+x^3+29*x^2+38*x+5", "y^2=12*x^6+31*x^5+16*x^4+37*x^3+25*x^2+12*x+27", "y^2=13*x^6+42*x^5+25*x^4+25*x^3+25*x^2+42*x+13", "y^2=44*x^6+16*x^5+10*x^4+26*x^3+33*x^2+6*x+34", "y^2=22*x^6+34*x^5+9*x^4+10*x^3+9*x^2+22*x+18", "y^2=13*x^6+21*x^5+5*x^4+36*x^3+12*x^2+34*x+11", "y^2=41*x^6+34*x^5+24*x^4+43*x^3+24*x^2+34*x+41", "y^2=44*x^6+34*x^5+43*x^4+30*x^3+23*x^2+9*x+32", "y^2=41*x^6+13*x^5+12*x^4+23*x^3+44*x^2+41*x+44", "y^2=46*x^6+16*x^5+16*x^4+30*x^3+14*x^2+39*x", "y^2=46*x^6+10*x^5+27*x^4+36*x^2+46*x+46", "y^2=45*x^6+43*x^5+43*x^4+16*x^3+43*x^2+43*x+45", "y^2=42*x^6+40*x^5+x^4+18*x^2+21*x+8", "y^2=22*x^6+43*x^5+21*x^4+6*x^3+19*x^2+39*x+1", "y^2=33*x^6+6*x^5+44*x^4+28*x^3+44*x^2+6*x+33", "y^2=29*x^6+8*x^5+2*x^3+9*x^2+15*x+14", "y^2=44*x^6+28*x^5+32*x^4+8*x^3+32*x^2+28*x+44", "y^2=40*x^6+45*x^5+25*x^4+46*x^3+x^2+16*x+29", "y^2=19*x^6+38*x^5+36*x^4+x^3+37*x^2+19*x", "y^2=21*x^6+36*x^5+37*x^4+20*x^3+18*x^2+37*x+20", "y^2=29*x^6+28*x^5+16*x^4+13*x^3+8*x^2+32*x+4", "y^2=45*x^6+15*x^5+26*x^4+x^3+22*x^2+38*x+14", "y^2=2*x^6+44*x^5+37*x^4+30*x^3+23*x^2+3*x+10", "y^2=10*x^6+17*x^5+4*x^4+43*x^3+9*x^2+24*x+2", "y^2=4*x^6+18*x^5+x^4+44*x^3+3*x^2+44*x+21"], "dim1_distinct": 2, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 56, "g": 2, "galois_groups": ["2T1", "2T1"], "geom_dim1_distinct": 2, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1", "2T1"], "geometric_number_fields": ["2.0.11.1", "2.0.31.1"], "geometric_splitting_field": "4.0.116281.1", "geometric_splitting_polynomials": [[25, 0, 21, 0, 1]], "group_structure_count": 6, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 246, "is_geometrically_simple": false, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": false, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 246, "label": "2.47.ae_ac", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["2.0.11.1", "2.0.31.1"], "p": 47, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -4, -2, -188, 2209], "poly_str": "1 -4 -2 -188 2209 ", "primitive_models": [], "q": 47, "real_poly": [1, -4, -96], "simple_distinct": ["1.47.am", "1.47.i"], "simple_factors": ["1.47.amA", "1.47.iA"], "simple_multiplicities": [1, 1], "singular_primes": ["2,-F+3", "5,-F-31", "5,V+6"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.116281.1", "splitting_polynomials": [[25, 0, 21, 0, 1]], "twist_count": 4, "twists": [["2.47.au_hi", "2.2209.au_eig", 2], ["2.47.e_ac", "2.2209.au_eig", 2], ["2.47.u_hi", "2.2209.au_eig", 2]], "weak_equivalence_count": 96, "zfv_index": 1600, "zfv_index_factorization": [[2, 6], [5, 2]], "zfv_is_bass": false, "zfv_is_maximal": false, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 5456, "zfv_singular_count": 6, "zfv_singular_primes": ["2,-F+3", "5,-F-31", "5,V+6"]}