Invariants
Base field: | $\F_{47}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 4 x^{2} + 2209 x^{4}$ |
Frobenius angles: | $\pm0.256774596364$, $\pm0.743225403636$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-2}, \sqrt{-5})\) |
Galois group: | $C_2^2$ |
Jacobians: | $126$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2214$ | $4901796$ | $10779188886$ | $23854276519056$ | $52599132332717814$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $48$ | $2218$ | $103824$ | $4888486$ | $229345008$ | $10779162442$ | $506623120464$ | $23811267425278$ | $1119130473102768$ | $52599132429605578$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 126 curves (of which all are hyperelliptic):
- $y^2=37 x^6+32 x^5+33 x^4+10 x^3+23 x^2+23 x+35$
- $y^2=44 x^6+19 x^5+24 x^4+3 x^3+21 x^2+21 x+34$
- $y^2=26 x^6+25 x^5+7 x^4+4 x^3+22 x^2+33 x+30$
- $y^2=36 x^6+31 x^5+35 x^4+20 x^3+16 x^2+24 x+9$
- $y^2=39 x^6+41 x^5+27 x^4+27 x^3+11 x^2+x+28$
- $y^2=7 x^6+17 x^5+41 x^4+41 x^3+8 x^2+5 x+46$
- $y^2=11 x^6+16 x^5+33 x^4+24 x^3+4 x^2+32 x+40$
- $y^2=8 x^6+33 x^5+24 x^4+26 x^3+20 x^2+19 x+12$
- $y^2=8 x^6+35 x^5+23 x^4+17 x^3+8 x^2+x+21$
- $y^2=40 x^6+34 x^5+21 x^4+38 x^3+40 x^2+5 x+11$
- $y^2=35 x^6+9 x^5+27 x^4+4 x^3+17 x^2+4 x+44$
- $y^2=34 x^6+45 x^5+41 x^4+20 x^3+38 x^2+20 x+32$
- $y^2=31 x^6+21 x^5+39 x^4+10 x^3+46 x^2+9 x+22$
- $y^2=14 x^6+11 x^5+7 x^4+3 x^3+42 x^2+45 x+16$
- $y^2=6 x^6+17 x^5+14 x^4+30 x^3+19 x^2+6 x+15$
- $y^2=30 x^6+38 x^5+23 x^4+9 x^3+x^2+30 x+28$
- $y^2=29 x^6+17 x^5+19 x^4+32 x^3+12 x^2+18 x+42$
- $y^2=4 x^6+38 x^5+x^4+19 x^3+13 x^2+43 x+22$
- $y^2=8 x^6+11 x^5+32 x^4+2 x^3+33 x^2+41 x+10$
- $y^2=40 x^6+8 x^5+19 x^4+10 x^3+24 x^2+17 x+3$
- and 106 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47^{2}}$.
Endomorphism algebra over $\F_{47}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2}, \sqrt{-5})\). |
The base change of $A$ to $\F_{47^{2}}$ is 1.2209.e 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-5}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.47.a_ae | $4$ | (not in LMFDB) |
2.47.ao_du | $8$ | (not in LMFDB) |
2.47.o_du | $8$ | (not in LMFDB) |