# Stored data for abelian variety isogeny class 2.47.a_e, downloaded from the LMFDB on 11 October 2025. {"abvar_count": 2214, "abvar_counts": [2214, 4901796, 10779188886, 23854276519056, 52599132332717814, 116190913040065920996, 256666986187369947681606, 566976914443262551973990400, 1252453015827223928292957400134, 2766668722154760545376039752938596], "abvar_counts_str": "2214 4901796 10779188886 23854276519056 52599132332717814 116190913040065920996 256666986187369947681606 566976914443262551973990400 1252453015827223928292957400134 2766668722154760545376039752938596 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.25677459636375, 0.74322540363625], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 48, "curve_counts": [48, 2218, 103824, 4888486, 229345008, 10779162442, 506623120464, 23811267425278, 1119130473102768, 52599132429605578], "curve_counts_str": "48 2218 103824 4888486 229345008 10779162442 506623120464 23811267425278 1119130473102768 52599132429605578 ", "curves": ["y^2=37*x^6+32*x^5+33*x^4+10*x^3+23*x^2+23*x+35", "y^2=44*x^6+19*x^5+24*x^4+3*x^3+21*x^2+21*x+34", "y^2=26*x^6+25*x^5+7*x^4+4*x^3+22*x^2+33*x+30", "y^2=36*x^6+31*x^5+35*x^4+20*x^3+16*x^2+24*x+9", "y^2=39*x^6+41*x^5+27*x^4+27*x^3+11*x^2+x+28", "y^2=7*x^6+17*x^5+41*x^4+41*x^3+8*x^2+5*x+46", "y^2=11*x^6+16*x^5+33*x^4+24*x^3+4*x^2+32*x+40", "y^2=8*x^6+33*x^5+24*x^4+26*x^3+20*x^2+19*x+12", "y^2=8*x^6+35*x^5+23*x^4+17*x^3+8*x^2+x+21", "y^2=40*x^6+34*x^5+21*x^4+38*x^3+40*x^2+5*x+11", "y^2=35*x^6+9*x^5+27*x^4+4*x^3+17*x^2+4*x+44", "y^2=34*x^6+45*x^5+41*x^4+20*x^3+38*x^2+20*x+32", "y^2=31*x^6+21*x^5+39*x^4+10*x^3+46*x^2+9*x+22", "y^2=14*x^6+11*x^5+7*x^4+3*x^3+42*x^2+45*x+16", "y^2=6*x^6+17*x^5+14*x^4+30*x^3+19*x^2+6*x+15", "y^2=30*x^6+38*x^5+23*x^4+9*x^3+x^2+30*x+28", "y^2=29*x^6+17*x^5+19*x^4+32*x^3+12*x^2+18*x+42", "y^2=4*x^6+38*x^5+x^4+19*x^3+13*x^2+43*x+22", "y^2=8*x^6+11*x^5+32*x^4+2*x^3+33*x^2+41*x+10", "y^2=40*x^6+8*x^5+19*x^4+10*x^3+24*x^2+17*x+3", "y^2=6*x^6+14*x^5+31*x^4+10*x^3+18*x^2+42*x+5", "y^2=30*x^6+23*x^5+14*x^4+3*x^3+43*x^2+22*x+25", "y^2=39*x^6+24*x^5+8*x^4+21*x^3+20*x^2+35*x+35", "y^2=7*x^6+26*x^5+40*x^4+11*x^3+6*x^2+34*x+34", "y^2=46*x^6+44*x^5+38*x^4+43*x^3+32*x^2+24*x+16", "y^2=42*x^6+32*x^5+2*x^4+27*x^3+19*x^2+26*x+33", "y^2=38*x^6+29*x^5+39*x^4+34*x^3+8*x^2+21*x+18", "y^2=2*x^6+4*x^5+7*x^4+29*x^3+40*x^2+11*x+43", "y^2=18*x^6+8*x^5+36*x^4+31*x^3+43*x^2+10*x+6", "y^2=43*x^6+40*x^5+39*x^4+14*x^3+27*x^2+3*x+30", "y^2=19*x^6+36*x^5+26*x^4+11*x^3+37*x^2+23*x+18", "y^2=x^6+39*x^5+36*x^4+8*x^3+44*x^2+21*x+43", "y^2=20*x^6+43*x^5+14*x^4+8*x^3+28*x^2+44*x+3", "y^2=6*x^6+27*x^5+23*x^4+40*x^3+46*x^2+32*x+15", "y^2=37*x^6+17*x^5+31*x^4+7*x^3+6*x^2+31*x+23", "y^2=44*x^6+38*x^5+14*x^4+35*x^3+30*x^2+14*x+21", "y^2=16*x^6+25*x^5+22*x^4+26*x^3+21*x^2+42*x+4", "y^2=33*x^6+31*x^5+16*x^4+36*x^3+11*x^2+22*x+20", "y^2=17*x^6+22*x^5+22*x^4+18*x^3+4*x^2+9*x+35", "y^2=38*x^6+16*x^5+16*x^4+43*x^3+20*x^2+45*x+34", "y^2=18*x^6+41*x^5+29*x^4+25*x^3+41*x^2+22*x+23", "y^2=43*x^6+17*x^5+4*x^4+31*x^3+17*x^2+16*x+21", "y^2=34*x^6+24*x^5+21*x^4+6*x^3+4*x^2+17*x+25", "y^2=29*x^6+26*x^5+11*x^4+30*x^3+20*x^2+38*x+31", "y^2=46*x^6+22*x^5+37*x^4+43*x^3+8*x^2+7*x+29", "y^2=42*x^6+16*x^5+44*x^4+27*x^3+40*x^2+35*x+4", "y^2=26*x^6+30*x^5+45*x^3+16*x^2+2*x+46", "y^2=36*x^6+9*x^5+37*x^3+33*x^2+10*x+42", "y^2=27*x^6+34*x^5+10*x^4+46*x^3+14*x^2+36*x+5", "y^2=41*x^6+29*x^5+3*x^4+42*x^3+23*x^2+39*x+25", "y^2=9*x^6+21*x^5+24*x^4+24*x^3+3*x^2+35*x+31", "y^2=45*x^6+11*x^5+26*x^4+26*x^3+15*x^2+34*x+14", "y^2=27*x^6+17*x^5+42*x^4+x^3+40*x^2+9*x+22", "y^2=41*x^6+38*x^5+22*x^4+5*x^3+12*x^2+45*x+16", "y^2=29*x^6+12*x^5+14*x^4+26*x^3+39*x^2+26*x+27", "y^2=4*x^6+13*x^5+23*x^4+36*x^3+7*x^2+36*x+41", "y^2=23*x^6+23*x^4+27*x^3+40*x^2+6*x+11", "y^2=21*x^6+21*x^4+41*x^3+12*x^2+30*x+8", "y^2=45*x^6+38*x^5+12*x^4+25*x^3+46*x^2+29*x+41", "y^2=37*x^6+2*x^5+13*x^4+31*x^3+42*x^2+4*x+17", "y^2=37*x^6+37*x^5+29*x^4+7*x^3+6*x^2+2*x+38", "y^2=44*x^6+44*x^5+4*x^4+35*x^3+30*x^2+10*x+2", "y^2=30*x^6+35*x^5+31*x^4+8*x^3+20*x^2+13*x+13", "y^2=9*x^6+34*x^5+14*x^4+40*x^3+6*x^2+18*x+18", "y^2=14*x^6+13*x^5+21*x^4+19*x^3+18*x^2+11*x+24", "y^2=23*x^6+18*x^5+11*x^4+x^3+43*x^2+8*x+26", "y^2=39*x^6+12*x^5+3*x^4+12*x^2+42*x+44", "y^2=7*x^6+13*x^5+15*x^4+13*x^2+22*x+32", "y^2=39*x^6+37*x^5+14*x^3+33*x^2+3", "y^2=7*x^6+44*x^5+23*x^3+24*x^2+15", "y^2=28*x^6+5*x^5+14*x^4+15*x^3+5*x^2+4*x+22", "y^2=46*x^6+25*x^5+23*x^4+28*x^3+25*x^2+20*x+16", "y^2=16*x^6+2*x^5+x^4+36*x^3+10*x^2+24*x+3", "y^2=33*x^6+10*x^5+5*x^4+39*x^3+3*x^2+26*x+15", "y^2=45*x^6+34*x^5+20*x^4+44*x^3+25*x^2+31*x+5", "y^2=37*x^6+29*x^5+6*x^4+32*x^3+31*x^2+14*x+25", "y^2=25*x^6+45*x^5+36*x^4+32*x^3+12*x^2+11*x+5", "y^2=31*x^6+37*x^5+39*x^4+19*x^3+13*x^2+8*x+25", "y^2=6*x^6+31*x^5+5*x^4+39*x^3+32*x^2+17*x+39", "y^2=30*x^6+14*x^5+25*x^4+7*x^3+19*x^2+38*x+7", "y^2=18*x^6+17*x^5+9*x^4+9*x^3+24*x^2+13*x+36", "y^2=43*x^6+38*x^5+45*x^4+45*x^3+26*x^2+18*x+39", "y^2=22*x^6+18*x^5+37*x^4+27*x^3+2*x^2+37*x+22", "y^2=16*x^6+43*x^5+44*x^4+41*x^3+10*x^2+44*x+16", "y^2=39*x^6+39*x^5+35*x^4+9*x^3+3*x+2", "y^2=7*x^6+7*x^5+34*x^4+45*x^3+15*x+10", "y^2=27*x^6+42*x^5+24*x^4+35*x^3+6*x^2+27*x+22", "y^2=41*x^6+22*x^5+26*x^4+34*x^3+30*x^2+41*x+16", "y^2=16*x^6+24*x^5+37*x^4+45*x^3+14*x^2+31*x+23", "y^2=33*x^6+26*x^5+44*x^4+37*x^3+23*x^2+14*x+21", "y^2=30*x^6+34*x^5+42*x^4+21*x^3+41*x^2+17*x+21", "y^2=9*x^6+29*x^5+22*x^4+11*x^3+17*x^2+38*x+11", "y^2=42*x^6+8*x^5+40*x^4+17*x^3+39*x^2+35*x+5", "y^2=22*x^6+40*x^5+12*x^4+38*x^3+7*x^2+34*x+25", "y^2=30*x^6+20*x^5+42*x^4+10*x^3+24*x^2+37*x+20", "y^2=9*x^6+6*x^5+22*x^4+3*x^3+26*x^2+44*x+6", "y^2=9*x^6+14*x^5+x^4+14*x^3+29*x^2+28*x+10", "y^2=45*x^6+23*x^5+5*x^4+23*x^3+4*x^2+46*x+3", "y^2=36*x^6+43*x^5+23*x^4+2*x^3+27*x^2+43*x+39", "y^2=39*x^6+27*x^5+21*x^4+10*x^3+41*x^2+27*x+7", "y^2=13*x^6+18*x^5+35*x^4+17*x^3+25*x^2+17*x+34", "y^2=18*x^6+43*x^5+34*x^4+38*x^3+31*x^2+38*x+29", "y^2=43*x^6+31*x^5+17*x^4+33*x^3+12*x^2+27*x+37", "y^2=27*x^6+14*x^5+38*x^4+24*x^3+13*x^2+41*x+44", "y^2=17*x^6+37*x^5+36*x^4+33*x^3+29*x^2+33*x+9", "y^2=38*x^6+44*x^5+39*x^4+24*x^3+4*x^2+24*x+45", "y^2=7*x^6+35*x^5+23*x^4+37*x^3+33*x^2+26*x+38", "y^2=35*x^6+34*x^5+21*x^4+44*x^3+24*x^2+36*x+2", "y^2=33*x^6+11*x^5+13*x^4+32*x^3+36*x^2+10*x+27", "y^2=24*x^6+8*x^5+18*x^4+19*x^3+39*x^2+3*x+41", "y^2=30*x^6+12*x^5+16*x^4+10*x^3+10*x^2+9*x+24", "y^2=9*x^6+13*x^5+33*x^4+3*x^3+3*x^2+45*x+26", "y^2=16*x^6+44*x^5+29*x^4+38*x^3+44*x^2+5*x+21", "y^2=33*x^6+32*x^5+4*x^4+2*x^3+32*x^2+25*x+11", "y^2=10*x^6+19*x^5+26*x^4+2*x^3+29*x^2+12*x+6", "y^2=3*x^6+x^5+36*x^4+10*x^3+4*x^2+13*x+30", "y^2=42*x^6+14*x^5+17*x^4+19*x^3+32*x^2+11*x+11", "y^2=22*x^6+23*x^5+38*x^4+x^3+19*x^2+8*x+8", "y^2=9*x^6+33*x^5+38*x^4+39*x^3+43*x^2+8*x+21", "y^2=45*x^6+24*x^5+2*x^4+7*x^3+27*x^2+40*x+11", "y^2=10*x^6+4*x^5+5*x^4+39*x^3+3*x^2+25*x+42", "y^2=3*x^6+20*x^5+25*x^4+7*x^3+15*x^2+31*x+22", "y^2=31*x^6+6*x^5+18*x^4+42*x^3+36*x^2+15*x+36", "y^2=14*x^6+30*x^5+43*x^4+22*x^3+39*x^2+28*x+39", "y^2=24*x^6+40*x^5+2*x^4+16*x^3+28*x^2+13*x+10", "y^2=26*x^6+12*x^5+10*x^4+33*x^3+46*x^2+18*x+3"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 8, "g": 2, "galois_groups": ["4T2"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 2, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.20.1"], "geometric_splitting_field": "2.0.20.1", "geometric_splitting_polynomials": [[5, 0, 1]], "group_structure_count": 2, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 126, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 126, "label": "2.47.a_e", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 8, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.6400.1"], "p": 47, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 0, 4, 0, 2209], "poly_str": "1 0 4 0 2209 ", "primitive_models": [], "q": 47, "real_poly": [1, 0, -90], "simple_distinct": ["2.47.a_e"], "simple_factors": ["2.47.a_eA"], "simple_multiplicities": [1], "singular_primes": ["3,-20*V-1", "3,14*V-4", "7,-6*F^2-9*F+23*V+9"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.6400.1", "splitting_polynomials": [[9, 0, -4, 0, 1]], "twist_count": 4, "twists": [["2.47.a_ae", "2.4879681.naq_cltuao", 4], ["2.47.ao_du", "2.23811286661761.abqcmiu_zvbgzvmzby", 8], ["2.47.o_du", "2.23811286661761.abqcmiu_zvbgzvmzby", 8]], "weak_equivalence_count": 8, "zfv_index": 441, "zfv_index_factorization": [[3, 2], [7, 2]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_plus_index": 3, "zfv_plus_index_factorization": [[3, 1]], "zfv_plus_norm": 9604, "zfv_singular_count": 6, "zfv_singular_primes": ["3,-20*V-1", "3,14*V-4", "7,-6*F^2-9*F+23*V+9"]}