Invariants
Base field: | $\F_{41}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 2 x - 15 x^{2} + 82 x^{3} + 1681 x^{4}$ |
Frobenius angles: | $\pm0.255433653965$, $\pm0.824068551096$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.245312.1 |
Galois group: | $D_{4}$ |
Jacobians: | $45$ |
Isomorphism classes: | 45 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1751$ | $2771833$ | $4773933404$ | $8000089351097$ | $13421948139018631$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $44$ | $1648$ | $69266$ | $2831124$ | $115850064$ | $4750225894$ | $194752920560$ | $7984921250340$ | $327381922394210$ | $13422659180945568$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 45 curves (of which all are hyperelliptic):
- $y^2=2 x^6+3 x^5+5 x^4+24 x^3+39 x^2+24 x+19$
- $y^2=19 x^6+24 x^5+36 x^4+4 x^3+4 x^2+35 x+17$
- $y^2=20 x^6+27 x^5+39 x^4+x^3+18 x^2+33 x+19$
- $y^2=40 x^6+6 x^5+10 x^4+39 x^3+33 x^2+14 x+33$
- $y^2=23 x^6+31 x^5+23 x^4+5 x^3+27 x^2+39 x+40$
- $y^2=3 x^6+29 x^5+33 x^4+34 x^3+16 x^2+33 x+8$
- $y^2=16 x^6+31 x^5+7 x^4+23 x^3+40 x^2+24 x+16$
- $y^2=25 x^6+27 x^5+23 x^4+26 x^3+35 x^2+21 x+23$
- $y^2=33 x^6+29 x^5+26 x^4+2 x^3+x^2+15 x+6$
- $y^2=4 x^6+20 x^5+15 x^4+35 x^3+35 x^2+36 x+21$
- $y^2=9 x^6+7 x^5+7 x^4+7 x^3+8 x^2+20 x+5$
- $y^2=14 x^6+8 x^5+36 x^4+25 x^3+37 x^2+25 x+15$
- $y^2=15 x^6+2 x^5+3 x^4+10 x^3+6 x^2+7 x+18$
- $y^2=30 x^6+34 x^5+10 x^4+10 x^3+20 x^2+6 x+26$
- $y^2=23 x^6+12 x^5+38 x^4+33 x^3+18 x^2+23 x+39$
- $y^2=40 x^6+34 x^5+20 x^4+27 x^3+4 x^2+14 x+13$
- $y^2=31 x^6+14 x^5+28 x^4+12 x^3+14 x^2+8 x+19$
- $y^2=6 x^6+17 x^5+30 x^4+3 x^3+35 x^2+3 x+26$
- $y^2=37 x^6+3 x^5+27 x^4+34 x^3+30 x^2+8 x+20$
- $y^2=18 x^6+35 x^5+12 x^4+37 x^3+2 x^2+3 x+20$
- and 25 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$The endomorphism algebra of this simple isogeny class is 4.0.245312.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.41.ac_ap | $2$ | (not in LMFDB) |