-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 1751, 'abvar_counts': [1751, 2771833, 4773933404, 8000089351097, 13421948139018631, 22564068167634531472, 37928963630519196392039, 63758999144383180303861673, 107178927039030216833380704284, 180167781222121636387674750909673], 'abvar_counts_str': '1751 2771833 4773933404 8000089351097 13421948139018631 22564068167634531472 37928963630519196392039 63758999144383180303861673 107178927039030216833380704284 180167781222121636387674750909673 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.255433653965381, 0.824068551096211], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 44, 'curve_counts': [44, 1648, 69266, 2831124, 115850064, 4750225894, 194752920560, 7984921250340, 327381922394210, 13422659180945568], 'curve_counts_str': '44 1648 69266 2831124 115850064 4750225894 194752920560 7984921250340 327381922394210 13422659180945568 ', 'curves': ['y^2=2*x^6+3*x^5+5*x^4+24*x^3+39*x^2+24*x+19', 'y^2=19*x^6+24*x^5+36*x^4+4*x^3+4*x^2+35*x+17', 'y^2=20*x^6+27*x^5+39*x^4+x^3+18*x^2+33*x+19', 'y^2=40*x^6+6*x^5+10*x^4+39*x^3+33*x^2+14*x+33', 'y^2=23*x^6+31*x^5+23*x^4+5*x^3+27*x^2+39*x+40', 'y^2=3*x^6+29*x^5+33*x^4+34*x^3+16*x^2+33*x+8', 'y^2=16*x^6+31*x^5+7*x^4+23*x^3+40*x^2+24*x+16', 'y^2=25*x^6+27*x^5+23*x^4+26*x^3+35*x^2+21*x+23', 'y^2=33*x^6+29*x^5+26*x^4+2*x^3+x^2+15*x+6', 'y^2=4*x^6+20*x^5+15*x^4+35*x^3+35*x^2+36*x+21', 'y^2=9*x^6+7*x^5+7*x^4+7*x^3+8*x^2+20*x+5', 'y^2=14*x^6+8*x^5+36*x^4+25*x^3+37*x^2+25*x+15', 'y^2=15*x^6+2*x^5+3*x^4+10*x^3+6*x^2+7*x+18', 'y^2=30*x^6+34*x^5+10*x^4+10*x^3+20*x^2+6*x+26', 'y^2=23*x^6+12*x^5+38*x^4+33*x^3+18*x^2+23*x+39', 'y^2=40*x^6+34*x^5+20*x^4+27*x^3+4*x^2+14*x+13', 'y^2=31*x^6+14*x^5+28*x^4+12*x^3+14*x^2+8*x+19', 'y^2=6*x^6+17*x^5+30*x^4+3*x^3+35*x^2+3*x+26', 'y^2=37*x^6+3*x^5+27*x^4+34*x^3+30*x^2+8*x+20', 'y^2=18*x^6+35*x^5+12*x^4+37*x^3+2*x^2+3*x+20', 'y^2=36*x^6+14*x^5+38*x^4+40*x^3+21*x^2+13*x+22', 'y^2=20*x^6+22*x^5+15*x^4+39*x^3+29*x^2+13*x+40', 'y^2=31*x^6+26*x^5+28*x^4+22*x^3+17*x^2+5*x+26', 'y^2=13*x^6+16*x^5+27*x^4+18*x^3+38*x^2+14*x+34', 'y^2=18*x^6+26*x^5+38*x^4+24*x^3+21*x^2+19*x+10', 'y^2=24*x^6+29*x^5+31*x^4+9*x^3+24*x^2+26*x+28', 'y^2=8*x^6+28*x^5+22*x^4+36*x^3+33*x^2+8*x+39', 'y^2=27*x^6+28*x^5+27*x^4+8*x^3+24*x^2+33*x+33', 'y^2=16*x^6+36*x^5+30*x^4+32*x^3+25*x^2+36*x+27', 'y^2=37*x^6+34*x^5+5*x^4+7*x^3+23*x^2+5*x+4', 'y^2=33*x^6+18*x^5+16*x^4+21*x^3+29*x^2+7*x+11', 'y^2=40*x^6+22*x^5+31*x^4+32*x^3+20*x^2+2*x+20', 'y^2=x^6+11*x^5+9*x^4+7*x^3+18*x^2+29*x+6', 'y^2=18*x^6+28*x^5+25*x^4+19*x^3+25*x^2+19*x+16', 'y^2=30*x^6+x^4+22*x^2+x+27', 'y^2=33*x^6+15*x^5+23*x^4+2*x^3+24*x^2+39*x+34', 'y^2=10*x^6+7*x^5+22*x^4+7*x^3+16*x^2+13*x+24', 'y^2=4*x^6+39*x^5+30*x^4+8*x^3+27*x^2+9*x+30', 'y^2=40*x^6+3*x^5+11*x^4+27*x^3+x^2+31*x+39', 'y^2=27*x^6+16*x^5+8*x^4+30*x^3+11*x^2+36*x+35', 'y^2=36*x^6+32*x^5+19*x^4+20*x^3+2*x^2+5*x+25', 'y^2=17*x^6+2*x^5+3*x^4+36*x^3+27*x^2+13*x+2', 'y^2=12*x^6+34*x^5+23*x^4+30*x^3+40*x^2+28*x+32', 'y^2=9*x^6+35*x^5+18*x^4+23*x^3+26*x^2+9*x+10', 'y^2=38*x^6+13*x^5+27*x^4+35*x^3+21*x^2+24*x+25'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 2, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.245312.1'], 'geometric_splitting_field': '4.0.245312.1', 'geometric_splitting_polynomials': [[257, -18, 33, -2, 1]], 'group_structure_count': 1, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 45, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 45, 'label': '2.41.c_ap', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.245312.1'], 'p': 41, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 17, 1, 40]], 'poly': [1, 2, -15, 82, 1681], 'poly_str': '1 2 -15 82 1681 ', 'primitive_models': [], 'principal_polarization_count': 45, 'q': 41, 'real_poly': [1, 2, -97], 'simple_distinct': ['2.41.c_ap'], 'simple_factors': ['2.41.c_apA'], 'simple_multiplicities': [1], 'singular_primes': ['7,47*F-37*V-93'], 'size': 45, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.245312.1', 'splitting_polynomials': [[257, -18, 33, -2, 1]], 'twist_count': 2, 'twists': [['2.41.ac_ap', '2.1681.abi_evj', 2]], 'weak_equivalence_count': 2, 'zfv_index': 49, 'zfv_index_factorization': [[7, 2]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_pic_size': 40, 'zfv_plus_index': 7, 'zfv_plus_index_factorization': [[7, 1]], 'zfv_plus_norm': 3833, 'zfv_singular_count': 2, 'zfv_singular_primes': ['7,47*F-37*V-93']}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.41.c_ap', 'extension_degree': 1, 'extension_label': '2.41.c_ap', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0', '0', '0'], 'center': '4.0.245312.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.41.c_ap', 'galois_group': '4T3', 'places': [['14', '1', '0', '0'], ['27', '1', '0', '0'], ['9', '1', '0', '0'], ['30', '1', '0', '0']]}