Invariants
| Base field: | $\F_{41}$ | 
| Dimension: | $2$ | 
| L-polynomial: | $1 - 18 x + 152 x^{2} - 738 x^{3} + 1681 x^{4}$ | 
| Frobenius angles: | $\pm0.0883036955963$, $\pm0.353631113310$ | 
| Angle rank: | $2$ (numerical) | 
| Number field: | 4.0.38720.3 | 
| Galois group: | $D_{4}$ | 
| Jacobians: | $22$ | 
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ | 
| Slopes: | $[0, 0, 1, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1078$ | $2792020$ | $4761225238$ | $7983222786000$ | $13420342712719558$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $24$ | $1662$ | $69084$ | $2825158$ | $115836204$ | $4749989262$ | $194754525864$ | $7984933498558$ | $327381993703944$ | $13422659500021902$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 22 curves (of which all are hyperelliptic):
- $y^2=30 x^6+16 x^5+19 x^4+32 x^3+12 x^2+6 x+14$
 - $y^2=17 x^6+6 x^5+18 x^4+32 x^3+39 x^2+12 x+16$
 - $y^2=24 x^6+6 x^5+8 x^4+16 x^3+10 x^2+27 x+20$
 - $y^2=30 x^6+15 x^5+9 x^4+23 x^3+18 x^2+27 x+19$
 - $y^2=24 x^6+34 x^5+31 x^4+24 x^3+33 x^2+5 x+16$
 - $y^2=2 x^6+40 x^5+x^4+33 x^3+39 x^2+7 x+15$
 - $y^2=24 x^6+12 x^5+18 x^4+28 x^3+4 x^2+17 x+2$
 - $y^2=24 x^6+36 x^5+32 x^4+9 x^3+36 x^2+38 x+27$
 - $y^2=35 x^6+22 x^5+28 x^4+22 x^3+17 x^2+29 x+15$
 - $y^2=11 x^6+15 x^5+22 x^4+35 x^3+16 x^2+33 x+28$
 - $y^2=19 x^6+35 x^5+17 x^4+27 x^3+13 x^2+20 x+14$
 - $y^2=11 x^6+18 x^5+40 x^4+11 x^3+10 x^2+8 x+10$
 - $y^2=27 x^6+5 x^5+37 x^4+5 x^3+7 x^2+2 x+34$
 - $y^2=34 x^6+21 x^5+33 x^4+27 x^3+19 x^2+18 x+36$
 - $y^2=10 x^6+3 x^5+34 x^4+19 x^3+28 x^2+37 x+17$
 - $y^2=14 x^6+21 x^5+8 x^4+36 x^3+30 x^2+30 x$
 - $y^2=9 x^5+35 x^4+35 x^3+17 x^2+27 x+34$
 - $y^2=21 x^6+9 x^5+15 x^4+11 x^3+10 x^2+14 x+13$
 - $y^2=23 x^6+39 x^5+29 x^4+19 x^3+36 x^2+12 x+29$
 - $y^2=28 x^6+27 x^5+8 x^4+38 x^3+20 x^2+2 x+3$
 - $y^2=10 x^6+39 x^5+16 x^4+6 x^3+33 x^2+27 x+24$
 - $y^2=30 x^6+27 x^5+10 x^4+28 x^3+34 x^2+29 x+13$
 
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$| The endomorphism algebra of this simple isogeny class is 4.0.38720.3. | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 2.41.s_fw | $2$ | (not in LMFDB) |