# Stored data for abelian variety isogeny class 2.41.as_fw, downloaded from the LMFDB on 08 November 2025. {"abvar_count": 1078, "abvar_counts": [1078, 2792020, 4761225238, 7983222786000, 13420342712719558, 22562944141231643380, 37929276269854713209158, 63759096945513747017856000, 107178950384549954029993308358, 180167785504974562533819980360500], "abvar_counts_str": "1078 2792020 4761225238 7983222786000 13420342712719558 22562944141231643380 37929276269854713209158 63759096945513747017856000 107178950384549954029993308358 180167785504974562533819980360500 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.0883036955962976, 0.353631113309774], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 24, "curve_counts": [24, 1662, 69084, 2825158, 115836204, 4749989262, 194754525864, 7984933498558, 327381993703944, 13422659500021902], "curve_counts_str": "24 1662 69084 2825158 115836204 4749989262 194754525864 7984933498558 327381993703944 13422659500021902 ", "curves": ["y^2=30*x^6+16*x^5+19*x^4+32*x^3+12*x^2+6*x+14", "y^2=17*x^6+6*x^5+18*x^4+32*x^3+39*x^2+12*x+16", "y^2=24*x^6+6*x^5+8*x^4+16*x^3+10*x^2+27*x+20", "y^2=30*x^6+15*x^5+9*x^4+23*x^3+18*x^2+27*x+19", "y^2=24*x^6+34*x^5+31*x^4+24*x^3+33*x^2+5*x+16", "y^2=2*x^6+40*x^5+x^4+33*x^3+39*x^2+7*x+15", "y^2=24*x^6+12*x^5+18*x^4+28*x^3+4*x^2+17*x+2", "y^2=24*x^6+36*x^5+32*x^4+9*x^3+36*x^2+38*x+27", "y^2=35*x^6+22*x^5+28*x^4+22*x^3+17*x^2+29*x+15", "y^2=11*x^6+15*x^5+22*x^4+35*x^3+16*x^2+33*x+28", "y^2=19*x^6+35*x^5+17*x^4+27*x^3+13*x^2+20*x+14", "y^2=11*x^6+18*x^5+40*x^4+11*x^3+10*x^2+8*x+10", "y^2=27*x^6+5*x^5+37*x^4+5*x^3+7*x^2+2*x+34", "y^2=34*x^6+21*x^5+33*x^4+27*x^3+19*x^2+18*x+36", "y^2=10*x^6+3*x^5+34*x^4+19*x^3+28*x^2+37*x+17", "y^2=14*x^6+21*x^5+8*x^4+36*x^3+30*x^2+30*x", "y^2=9*x^5+35*x^4+35*x^3+17*x^2+27*x+34", "y^2=21*x^6+9*x^5+15*x^4+11*x^3+10*x^2+14*x+13", "y^2=23*x^6+39*x^5+29*x^4+19*x^3+36*x^2+12*x+29", "y^2=28*x^6+27*x^5+8*x^4+38*x^3+20*x^2+2*x+3", "y^2=10*x^6+39*x^5+16*x^4+6*x^3+33*x^2+27*x+24", "y^2=30*x^6+27*x^5+10*x^4+28*x^3+34*x^2+29*x+13"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 2, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.38720.3"], "geometric_splitting_field": "4.0.4400.1", "geometric_splitting_polynomials": [[11, 0, 7, 0, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 22, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 22, "label": "2.41.as_fw", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.38720.3"], "p": 41, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -18, 152, -738, 1681], "poly_str": "1 -18 152 -738 1681 ", "primitive_models": [], "q": 41, "real_poly": [1, -18, 70], "simple_distinct": ["2.41.as_fw"], "simple_factors": ["2.41.as_fwA"], "simple_multiplicities": [1], "singular_primes": ["3,-26*F-10*V+180"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.4400.1", "splitting_polynomials": [[11, 0, 7, 0, 1]], "twist_count": 2, "twists": [["2.41.s_fw", "2.1681.au_ady", 2]], "weak_equivalence_count": 2, "zfv_index": 9, "zfv_index_factorization": [[3, 2]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 1620, "zfv_singular_count": 2, "zfv_singular_primes": ["3,-26*F-10*V+180"]}