Invariants
| Base field: | $\F_{37}$ | 
| Dimension: | $2$ | 
| L-polynomial: | $1 + 39 x^{2} + 1369 x^{4}$ | 
| Frobenius angles: | $\pm0.338346672835$, $\pm0.661653327165$ | 
| Angle rank: | $1$ (numerical) | 
| Number field: | \(\Q(\sqrt{35}, \sqrt{-113})\) | 
| Galois group: | $C_2^2$ | 
| Jacobians: | $42$ | 
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ | 
| Slopes: | $[0, 0, 1, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1409$ | $1985281$ | $2565625556$ | $3517046393641$ | $4808584422064889$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $38$ | $1448$ | $50654$ | $1876596$ | $69343958$ | $2565524702$ | $94931877134$ | $3512483988388$ | $129961739795078$ | $4808584471711928$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 42 curves (of which all are hyperelliptic):
- $y^2=19 x^6+17 x^5+12 x^4+13 x^3+18 x^2+29 x+4$
 - $y^2=9 x^6+19 x^5+8 x^4+6 x^3+x^2+24 x+17$
 - $y^2=3 x^6+29 x^5+30 x^4+25 x^3+18 x^2+17 x+33$
 - $y^2=6 x^6+21 x^5+23 x^4+13 x^3+36 x^2+34 x+29$
 - $y^2=22 x^6+8 x^5+14 x^4+12 x^3+4 x^2+17 x+17$
 - $y^2=7 x^6+16 x^5+28 x^4+24 x^3+8 x^2+34 x+34$
 - $y^2=29 x^6+24 x^5+13 x^4+15 x^3+8 x^2+x+34$
 - $y^2=21 x^6+11 x^5+26 x^4+30 x^3+16 x^2+2 x+31$
 - $y^2=12 x^6+36 x^5+27 x^4+12 x^3+6 x^2+3 x+24$
 - $y^2=24 x^6+35 x^5+17 x^4+24 x^3+12 x^2+6 x+11$
 - $y^2=14 x^6+36 x^5+2 x^4+36 x^2+9 x+26$
 - $y^2=18 x^6+10 x^5+7 x^4+27 x^3+12 x^2+21 x+31$
 - $y^2=36 x^6+20 x^5+14 x^4+17 x^3+24 x^2+5 x+25$
 - $y^2=12 x^6+34 x^4+17 x^3+17 x^2+34 x+36$
 - $y^2=24 x^6+31 x^4+34 x^3+34 x^2+31 x+35$
 - $y^2=31 x^6+36 x^5+26 x^4+26 x^3+8 x^2+27 x+11$
 - $y^2=25 x^6+35 x^5+15 x^4+15 x^3+16 x^2+17 x+22$
 - $y^2=36 x^6+35 x^5+14 x^4+28 x^3+x^2+13 x+7$
 - $y^2=35 x^6+33 x^5+28 x^4+19 x^3+2 x^2+26 x+14$
 - $y^2=5 x^6+34 x^5+5 x^4+6 x^3+30 x^2+15 x+28$
 - and 22 more
 
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37^{2}}$.
Endomorphism algebra over $\F_{37}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{35}, \sqrt{-113})\). | 
| The base change of $A$ to $\F_{37^{2}}$ is 1.1369.bn 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3955}) \)$)$ | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 2.37.a_abn | $4$ | (not in LMFDB) |