-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 1409, 'abvar_counts': [1409, 1985281, 2565625556, 3517046393641, 4808584422064889, 6582434493600309136, 9012061296123604486721, 12337527841447991174534025, 16890053810563051201849559924, 23122484144125122553122526582321], 'abvar_counts_str': '1409 1985281 2565625556 3517046393641 4808584422064889 6582434493600309136 9012061296123604486721 12337527841447991174534025 16890053810563051201849559924 23122484144125122553122526582321 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.338346672834715, 0.661653327165285], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 38, 'curve_counts': [38, 1448, 50654, 1876596, 69343958, 2565524702, 94931877134, 3512483988388, 129961739795078, 4808584471711928], 'curve_counts_str': '38 1448 50654 1876596 69343958 2565524702 94931877134 3512483988388 129961739795078 4808584471711928 ', 'curves': ['y^2=19*x^6+17*x^5+12*x^4+13*x^3+18*x^2+29*x+4', 'y^2=9*x^6+19*x^5+8*x^4+6*x^3+x^2+24*x+17', 'y^2=3*x^6+29*x^5+30*x^4+25*x^3+18*x^2+17*x+33', 'y^2=6*x^6+21*x^5+23*x^4+13*x^3+36*x^2+34*x+29', 'y^2=22*x^6+8*x^5+14*x^4+12*x^3+4*x^2+17*x+17', 'y^2=7*x^6+16*x^5+28*x^4+24*x^3+8*x^2+34*x+34', 'y^2=29*x^6+24*x^5+13*x^4+15*x^3+8*x^2+x+34', 'y^2=21*x^6+11*x^5+26*x^4+30*x^3+16*x^2+2*x+31', 'y^2=12*x^6+36*x^5+27*x^4+12*x^3+6*x^2+3*x+24', 'y^2=24*x^6+35*x^5+17*x^4+24*x^3+12*x^2+6*x+11', 'y^2=14*x^6+36*x^5+2*x^4+36*x^2+9*x+26', 'y^2=18*x^6+10*x^5+7*x^4+27*x^3+12*x^2+21*x+31', 'y^2=36*x^6+20*x^5+14*x^4+17*x^3+24*x^2+5*x+25', 'y^2=12*x^6+34*x^4+17*x^3+17*x^2+34*x+36', 'y^2=24*x^6+31*x^4+34*x^3+34*x^2+31*x+35', 'y^2=31*x^6+36*x^5+26*x^4+26*x^3+8*x^2+27*x+11', 'y^2=25*x^6+35*x^5+15*x^4+15*x^3+16*x^2+17*x+22', 'y^2=36*x^6+35*x^5+14*x^4+28*x^3+x^2+13*x+7', 'y^2=35*x^6+33*x^5+28*x^4+19*x^3+2*x^2+26*x+14', 'y^2=5*x^6+34*x^5+5*x^4+6*x^3+30*x^2+15*x+28', 'y^2=10*x^6+31*x^5+10*x^4+12*x^3+23*x^2+30*x+19', 'y^2=21*x^6+18*x^5+12*x^4+15*x^3+9*x^2+5*x+2', 'y^2=5*x^6+36*x^5+24*x^4+30*x^3+18*x^2+10*x+4', 'y^2=8*x^6+29*x^5+25*x^4+4*x^3+26*x^2+23*x+25', 'y^2=16*x^6+21*x^5+13*x^4+8*x^3+15*x^2+9*x+13', 'y^2=15*x^6+31*x^5+3*x^4+16*x^3+32*x^2+33*x+10', 'y^2=30*x^6+25*x^5+6*x^4+32*x^3+27*x^2+29*x+20', 'y^2=12*x^6+35*x^5+17*x^4+25*x^3+25*x^2+17*x+10', 'y^2=24*x^6+33*x^5+34*x^4+13*x^3+13*x^2+34*x+20', 'y^2=14*x^6+x^5+34*x^4+29*x^3+35*x^2+21*x+11', 'y^2=21*x^6+8*x^5+25*x^4+8*x^3+28*x^2+17*x+32', 'y^2=5*x^6+16*x^5+13*x^4+16*x^3+19*x^2+34*x+27', 'y^2=22*x^6+32*x^5+28*x^4+35*x^3+7*x^2+29*x+36', 'y^2=7*x^6+27*x^5+19*x^4+33*x^3+14*x^2+21*x+35', 'y^2=9*x^6+27*x^5+19*x^4+29*x^3+30*x^2+x+20', 'y^2=17*x^6+27*x^5+26*x^4+25*x^3+31*x^2+32*x+11', 'y^2=34*x^6+17*x^5+15*x^4+13*x^3+25*x^2+27*x+22', 'y^2=29*x^6+3*x^5+8*x^4+8*x^3+2*x^2+25*x+16', 'y^2=21*x^6+6*x^5+16*x^4+16*x^3+4*x^2+13*x+32', 'y^2=27*x^6+33*x^5+27*x^4+14*x^3+35*x^2+25*x+31', 'y^2=8*x^6+27*x^5+10*x^3+25*x^2+8*x+29', 'y^2=16*x^6+17*x^5+20*x^3+13*x^2+16*x+21'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 1, 'g': 2, 'galois_groups': ['4T2'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 2, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.3955.1'], 'geometric_splitting_field': '2.0.3955.1', 'geometric_splitting_polynomials': [[989, -1, 1]], 'group_structure_count': 1, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 42, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 42, 'label': '2.37.a_bn', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 4, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.250272400.1'], 'p': 37, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 0, 39, 0, 1369], 'poly_str': '1 0 39 0 1369 ', 'primitive_models': [], 'q': 37, 'real_poly': [1, 0, -35], 'simple_distinct': ['2.37.a_bn'], 'simple_factors': ['2.37.a_bnA'], 'simple_multiplicities': [1], 'singular_primes': [], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.250272400.1', 'splitting_polynomials': [[1369, 0, 39, 0, 1]], 'twist_count': 2, 'twists': [['2.37.a_abn', '2.1874161.dpq_llnvf', 4]], 'weak_equivalence_count': 1, 'zfv_index': 1, 'zfv_index_factorization': [], 'zfv_is_bass': True, 'zfv_is_maximal': True, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 12769, 'zfv_singular_count': 0, 'zfv_singular_primes': []}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 24607
{'base_label': '2.37.a_bn', 'extension_degree': 1, 'extension_label': '2.37.a_bn', 'multiplicity': 1}
-
id: 24608
{'base_label': '2.37.a_bn', 'extension_degree': 2, 'extension_label': '1.1369.bn', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '4.0.250272400.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.37.a_bn', 'galois_group': '4T2', 'places': [['0', '39/37', '0', '1/37'], ['0', '1', '0', '0']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.3955.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.1369.bn', 'galois_group': '2T1', 'places': [['19', '1'], ['17', '1']]}