Invariants
Base field: | $\F_{31}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 4 x + 39 x^{2} + 124 x^{3} + 961 x^{4}$ |
Frobenius angles: | $\pm0.407334396209$, $\pm0.723656816862$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.131472.1 |
Galois group: | $D_{4}$ |
Jacobians: | $34$ |
Isomorphism classes: | 42 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1129$ | $985617$ | $886531444$ | $853868589993$ | $819212804774809$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $36$ | $1024$ | $29760$ | $924580$ | $28614636$ | $887464870$ | $27513235044$ | $852890850628$ | $26439617454144$ | $819628273395424$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 34 curves (of which all are hyperelliptic):
- $y^2=29 x^6+13 x^5+5 x^4+6 x^3+8 x^2+25 x+11$
- $y^2=25 x^6+5 x^5+15 x^4+14 x^3+9 x^2+6 x+24$
- $y^2=15 x^6+27 x^5+25 x^4+21 x^3+9 x^2+27 x+5$
- $y^2=14 x^6+8 x^5+3 x^4+19 x^3+19 x^2+10 x+5$
- $y^2=8 x^6+11 x^5+29 x^4+28 x^3+17 x^2+17 x+5$
- $y^2=27 x^6+x^5+16 x^4+20 x^3+26 x^2+21 x+28$
- $y^2=4 x^6+17 x^5+20 x^4+26 x^3+7 x^2+28 x+19$
- $y^2=18 x^6+14 x^5+11 x^4+22 x^3+28 x^2+4 x+6$
- $y^2=20 x^6+15 x^5+15 x^4+25 x^3+5 x^2+16 x+17$
- $y^2=7 x^6+23 x^5+24 x^3+7 x^2+6 x+1$
- $y^2=6 x^6+29 x^5+14 x^4+23 x^3+12 x^2+8 x+6$
- $y^2=5 x^6+18 x^5+28 x^4+11 x^3+8 x^2+28 x+11$
- $y^2=12 x^6+24 x^5+3 x^4+12 x^3+3 x^2+22 x+24$
- $y^2=29 x^6+12 x^5+15 x^3+2 x^2+6 x+20$
- $y^2=2 x^6+15 x^5+15 x^4+x^3+27 x^2+18 x+12$
- $y^2=x^6+21 x^5+19 x^4+x^2+3 x+22$
- $y^2=8 x^6+24 x^5+21 x^4+28 x^3+x^2+20 x+19$
- $y^2=9 x^6+27 x^5+25 x^4+4 x^3+6 x^2+2 x+25$
- $y^2=28 x^6+27 x^5+5 x^4+16 x^3+10 x^2+2 x+20$
- $y^2=12 x^6+21 x^4+26 x^3+11 x^2+11 x+26$
- and 14 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31}$.
Endomorphism algebra over $\F_{31}$The endomorphism algebra of this simple isogeny class is 4.0.131472.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.31.ae_bn | $2$ | (not in LMFDB) |