-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 1129, 'abvar_counts': [1129, 985617, 886531444, 853868589993, 819212804774809, 787628340066622608, 756961018834513328761, 727422962415054677267913, 699053495560273772521090036, 671790517684121472974172281457], 'abvar_counts_str': '1129 985617 886531444 853868589993 819212804774809 787628340066622608 756961018834513328761 727422962415054677267913 699053495560273772521090036 671790517684121472974172281457 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.407334396209335, 0.72365681686206], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 36, 'curve_counts': [36, 1024, 29760, 924580, 28614636, 887464870, 27513235044, 852890850628, 26439617454144, 819628273395424], 'curve_counts_str': '36 1024 29760 924580 28614636 887464870 27513235044 852890850628 26439617454144 819628273395424 ', 'curves': ['y^2=29*x^6+13*x^5+5*x^4+6*x^3+8*x^2+25*x+11', 'y^2=25*x^6+5*x^5+15*x^4+14*x^3+9*x^2+6*x+24', 'y^2=15*x^6+27*x^5+25*x^4+21*x^3+9*x^2+27*x+5', 'y^2=14*x^6+8*x^5+3*x^4+19*x^3+19*x^2+10*x+5', 'y^2=8*x^6+11*x^5+29*x^4+28*x^3+17*x^2+17*x+5', 'y^2=27*x^6+x^5+16*x^4+20*x^3+26*x^2+21*x+28', 'y^2=4*x^6+17*x^5+20*x^4+26*x^3+7*x^2+28*x+19', 'y^2=18*x^6+14*x^5+11*x^4+22*x^3+28*x^2+4*x+6', 'y^2=20*x^6+15*x^5+15*x^4+25*x^3+5*x^2+16*x+17', 'y^2=7*x^6+23*x^5+24*x^3+7*x^2+6*x+1', 'y^2=6*x^6+29*x^5+14*x^4+23*x^3+12*x^2+8*x+6', 'y^2=5*x^6+18*x^5+28*x^4+11*x^3+8*x^2+28*x+11', 'y^2=12*x^6+24*x^5+3*x^4+12*x^3+3*x^2+22*x+24', 'y^2=29*x^6+12*x^5+15*x^3+2*x^2+6*x+20', 'y^2=2*x^6+15*x^5+15*x^4+x^3+27*x^2+18*x+12', 'y^2=x^6+21*x^5+19*x^4+x^2+3*x+22', 'y^2=8*x^6+24*x^5+21*x^4+28*x^3+x^2+20*x+19', 'y^2=9*x^6+27*x^5+25*x^4+4*x^3+6*x^2+2*x+25', 'y^2=28*x^6+27*x^5+5*x^4+16*x^3+10*x^2+2*x+20', 'y^2=12*x^6+21*x^4+26*x^3+11*x^2+11*x+26', 'y^2=17*x^6+7*x^5+14*x^4+3*x^3+28*x^2+10*x+17', 'y^2=21*x^6+8*x^5+27*x^4+24*x^3+20*x^2+11*x+16', 'y^2=27*x^6+22*x^5+6*x^4+25*x^3+21*x^2+10*x+7', 'y^2=x^6+26*x^5+13*x^4+21*x^3+2*x^2+17*x+15', 'y^2=16*x^6+10*x^5+18*x^4+6*x^3+11*x^2+11*x+24', 'y^2=9*x^6+18*x^5+9*x^4+13*x^3+8*x^2+16*x+14', 'y^2=13*x^6+16*x^5+22*x^4+16*x^3+14*x^2+x+7', 'y^2=5*x^6+20*x^5+14*x^4+28*x^3+17*x^2+7*x+4', 'y^2=4*x^6+5*x^5+x^4+27*x^3+26*x^2+29*x+21', 'y^2=6*x^6+28*x^5+21*x^4+24*x^3+11*x^2+4*x+16', 'y^2=29*x^6+10*x^5+9*x^4+18*x^3+15*x^2+25*x+22', 'y^2=21*x^6+25*x^5+28*x^4+4*x^3+26*x^2+27*x+17', 'y^2=22*x^6+24*x^5+19*x^4+9*x^3+12*x^2+22*x+26', 'y^2=24*x^6+30*x^5+x^4+27*x^3+10*x^2+19*x+14'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 4, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.131472.1'], 'geometric_splitting_field': '4.0.131472.1', 'geometric_splitting_polynomials': [[61, -16, 17, -2, 1]], 'group_structure_count': 1, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 34, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 34, 'label': '2.31.e_bn', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.131472.1'], 'p': 31, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 11, 1, 12], [1, 11, 3, 2]], 'poly': [1, 4, 39, 124, 961], 'poly_str': '1 4 39 124 961 ', 'primitive_models': [], 'principal_polarization_count': 34, 'q': 31, 'real_poly': [1, 4, -23], 'simple_distinct': ['2.31.e_bn'], 'simple_factors': ['2.31.e_bnA'], 'simple_multiplicities': [1], 'singular_primes': ['3,F+2*V+6'], 'size': 42, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.131472.1', 'splitting_polynomials': [[61, -16, 17, -2, 1]], 'twist_count': 2, 'twists': [['2.31.ae_bn', '2.961.ck_dqh', 2]], 'weak_equivalence_count': 4, 'zfv_index': 27, 'zfv_index_factorization': [[3, 3]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_pic_size': 24, 'zfv_plus_index': 3, 'zfv_plus_index_factorization': [[3, 1]], 'zfv_plus_norm': 8217, 'zfv_singular_count': 2, 'zfv_singular_primes': ['3,F+2*V+6']}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.31.e_bn', 'extension_degree': 1, 'extension_label': '2.31.e_bn', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '4.0.131472.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.31.e_bn', 'galois_group': '4T3', 'places': [['14', '11', '21', '0'], ['16', '22', '10', '0']]}