Invariants
| Base field: | $\F_{191}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 27 x + 191 x^{2} )( 1 - 20 x + 191 x^{2} )$ |
| $1 - 47 x + 922 x^{2} - 8977 x^{3} + 36481 x^{4}$ | |
| Frobenius angles: | $\pm0.0686610702072$, $\pm0.242497774430$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $56$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $28380$ | $1317626640$ | $48545985795120$ | $1771230810646440000$ | $64615128331508560294500$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $145$ | $36117$ | $6967120$ | $1330888553$ | $254195217275$ | $48551224431582$ | $9273284094390125$ | $1771197283448172913$ | $338298681541989714160$ | $64615048178041051967277$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 56 curves (of which all are hyperelliptic):
- $y^2=82 x^6+163 x^5+13 x^4+68 x^3+171 x^2+160 x+186$
- $y^2=158 x^6+65 x^5+93 x^4+106 x^3+97 x^2+84 x+51$
- $y^2=4 x^6+160 x^5+126 x^4+49 x^3+36 x^2+138 x+22$
- $y^2=164 x^6+13 x^5+11 x^4+126 x^3+29 x^2+103 x+134$
- $y^2=140 x^6+115 x^5+12 x^4+67 x^3+133 x^2+124 x+153$
- $y^2=6 x^6+189 x^5+135 x^4+130 x^3+65 x^2+125 x+23$
- $y^2=169 x^6+53 x^5+60 x^4+124 x^3+59 x^2+97 x+26$
- $y^2=121 x^6+62 x^5+31 x^4+68 x^3+111 x^2+147 x+141$
- $y^2=158 x^6+62 x^5+177 x^4+42 x^3+108 x^2+68 x+145$
- $y^2=43 x^6+116 x^5+29 x^4+117 x^3+15 x^2+112 x+6$
- $y^2=55 x^6+13 x^5+83 x^4+70 x^3+130 x^2+40 x+114$
- $y^2=122 x^6+143 x^5+35 x^4+109 x^3+150 x^2+181 x+21$
- $y^2=91 x^6+39 x^5+21 x^4+16 x^3+105 x^2+140 x+121$
- $y^2=57 x^6+117 x^5+10 x^4+61 x^3+24 x^2+65 x+29$
- $y^2=175 x^6+155 x^5+79 x^4+62 x^3+65 x^2+46 x+6$
- $y^2=60 x^6+63 x^5+20 x^4+110 x^3+89 x^2+65 x+189$
- $y^2=x^6+174 x^5+6 x^4+63 x^3+183 x^2+10 x+158$
- $y^2=61 x^6+55 x^5+2 x^4+17 x^3+36 x^2+58 x+157$
- $y^2=152 x^6+10 x^5+124 x^4+51 x^3+23 x^2+107 x+147$
- $y^2=110 x^6+10 x^5+82 x^4+95 x^3+151 x^2+11 x+36$
- and 36 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{191}$.
Endomorphism algebra over $\F_{191}$| The isogeny class factors as 1.191.abb $\times$ 1.191.au and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.191.ah_agc | $2$ | (not in LMFDB) |
| 2.191.h_agc | $2$ | (not in LMFDB) |
| 2.191.bv_bjm | $2$ | (not in LMFDB) |