# Stored data for abelian variety isogeny class 2.191.abv_bjm, downloaded from the LMFDB on 02 November 2025. {"abvar_count": 28380, "abvar_counts": [28380, 1317626640, 48545985795120, 1771230810646440000, 64615128331508560294500, 2357221483191554677050312960, 85993799042228598890905835228820, 3137139820797983078389802988251040000, 114445997938997081888210383357938972354480, 4175104451040063199201578635538579059228106000], "abvar_counts_str": "28380 1317626640 48545985795120 1771230810646440000 64615128331508560294500 2357221483191554677050312960 85993799042228598890905835228820 3137139820797983078389802988251040000 114445997938997081888210383357938972354480 4175104451040063199201578635538579059228106000 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.0686610702072426, 0.242497774430314], "center_dim": 4, "curve_count": 145, "curve_counts": [145, 36117, 6967120, 1330888553, 254195217275, 48551224431582, 9273284094390125, 1771197283448172913, 338298681541989714160, 64615048178041051967277], "curve_counts_str": "145 36117 6967120 1330888553 254195217275 48551224431582 9273284094390125 1771197283448172913 338298681541989714160 64615048178041051967277 ", "curves": ["y^2=82*x^6+163*x^5+13*x^4+68*x^3+171*x^2+160*x+186", "y^2=158*x^6+65*x^5+93*x^4+106*x^3+97*x^2+84*x+51", "y^2=4*x^6+160*x^5+126*x^4+49*x^3+36*x^2+138*x+22", "y^2=164*x^6+13*x^5+11*x^4+126*x^3+29*x^2+103*x+134", "y^2=140*x^6+115*x^5+12*x^4+67*x^3+133*x^2+124*x+153", "y^2=6*x^6+189*x^5+135*x^4+130*x^3+65*x^2+125*x+23", "y^2=169*x^6+53*x^5+60*x^4+124*x^3+59*x^2+97*x+26", "y^2=121*x^6+62*x^5+31*x^4+68*x^3+111*x^2+147*x+141", "y^2=158*x^6+62*x^5+177*x^4+42*x^3+108*x^2+68*x+145", "y^2=43*x^6+116*x^5+29*x^4+117*x^3+15*x^2+112*x+6", "y^2=55*x^6+13*x^5+83*x^4+70*x^3+130*x^2+40*x+114", "y^2=122*x^6+143*x^5+35*x^4+109*x^3+150*x^2+181*x+21", "y^2=91*x^6+39*x^5+21*x^4+16*x^3+105*x^2+140*x+121", "y^2=57*x^6+117*x^5+10*x^4+61*x^3+24*x^2+65*x+29", "y^2=175*x^6+155*x^5+79*x^4+62*x^3+65*x^2+46*x+6", "y^2=60*x^6+63*x^5+20*x^4+110*x^3+89*x^2+65*x+189", "y^2=x^6+174*x^5+6*x^4+63*x^3+183*x^2+10*x+158", "y^2=61*x^6+55*x^5+2*x^4+17*x^3+36*x^2+58*x+157", "y^2=152*x^6+10*x^5+124*x^4+51*x^3+23*x^2+107*x+147", "y^2=110*x^6+10*x^5+82*x^4+95*x^3+151*x^2+11*x+36", "y^2=180*x^6+129*x^5+111*x^4+66*x^3+17*x^2+108*x+35", "y^2=29*x^6+156*x^5+104*x^4+102*x^3+13*x^2+155*x+153", "y^2=42*x^6+177*x^5+176*x^4+164*x^3+148*x^2+187*x+178", "y^2=142*x^6+103*x^5+90*x^4+126*x^3+105*x^2+53*x+127", "y^2=154*x^6+76*x^5+185*x^4+18*x^3+57*x^2+136*x+129", "y^2=x^6+2*x^5+127*x^4+58*x^3+176*x^2+89*x+165", "y^2=137*x^6+39*x^5+163*x^4+146*x^3+26*x^2+119*x+84", "y^2=149*x^6+42*x^5+24*x^4+15*x^3+42*x^2+94*x+80", "y^2=171*x^6+167*x^5+159*x^4+61*x^3+108*x^2+159*x+173", "y^2=19*x^6+127*x^5+88*x^4+156*x^3+12*x^2+137*x+119", "y^2=141*x^6+24*x^5+75*x^4+40*x^3+146*x^2+89*x+187", "y^2=96*x^6+100*x^5+30*x^4+127*x^3+7*x^2+82*x+57", "y^2=70*x^6+81*x^5+63*x^4+47*x^3+28*x^2+90*x+76", "y^2=5*x^6+164*x^5+86*x^4+172*x^3+182*x^2+179*x+155", "y^2=77*x^6+95*x^5+75*x^4+19*x^3+146*x^2+96*x+17", "y^2=43*x^6+54*x^5+57*x^4+152*x^3+21*x^2+125*x+143", "y^2=169*x^6+33*x^5+182*x^4+179*x^3+160*x^2+159*x+144", "y^2=189*x^6+173*x^5+63*x^4+24*x^3+155*x^2+145*x+89", "y^2=93*x^6+87*x^5+57*x^4+18*x^3+155*x^2+24*x+132", "y^2=62*x^6+74*x^5+159*x^4+160*x^3+83*x^2+27*x+188", "y^2=167*x^6+132*x^5+76*x^4+182*x^3+163*x^2+82*x+117", "y^2=129*x^6+70*x^5+93*x^4+91*x^3+45*x^2+49*x+81", "y^2=85*x^6+82*x^5+43*x^4+88*x^3+105*x^2+86*x+7", "y^2=104*x^6+29*x^5+130*x^4+80*x^3+14*x^2+145*x+142", "y^2=107*x^6+64*x^5+152*x^4+12*x^3+138*x^2+85*x+181", "y^2=18*x^6+143*x^5+92*x^4+x^3+60*x^2+172*x+83", "y^2=121*x^6+130*x^5+126*x^4+167*x^3+67*x^2+108*x+61", "y^2=15*x^6+152*x^5+26*x^4+151*x^3+130*x^2+114*x+150", "y^2=155*x^6+29*x^5+151*x^4+5*x^3+66*x^2+161*x+28", "y^2=157*x^6+18*x^5+9*x^4+111*x^3+57*x^2+162*x+147", "y^2=109*x^6+169*x^5+90*x^4+107*x^3+81*x^2+100*x+6", "y^2=133*x^6+76*x^5+57*x^4+10*x^3+150*x^2+138*x+55", "y^2=56*x^6+146*x^5+149*x^4+29*x^3+66*x^2+74*x+126", "y^2=159*x^6+36*x^5+15*x^4+51*x^3+20*x^2+52*x+184", "y^2=188*x^6+104*x^5+33*x^4+110*x^3+106*x^2+20*x+5", "y^2=152*x^6+171*x^5+133*x^4+16*x^3+145*x^2+135*x+92"], "dim1_distinct": 2, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "g": 2, "galois_groups": ["2T1", "2T1"], "geom_dim1_distinct": 2, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1", "2T1"], "geometric_number_fields": ["2.0.35.1", "2.0.91.1"], "geometric_splitting_field": "4.0.207025.1", "geometric_splitting_polynomials": [[79, 53, 8, -1, 1]], "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 56, "is_geometrically_simple": false, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": false, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 56, "label": "2.191.abv_bjm", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["2.0.35.1", "2.0.91.1"], "p": 191, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -47, 922, -8977, 36481], "poly_str": "1 -47 922 -8977 36481 ", "primitive_models": [], "q": 191, "real_poly": [1, -47, 540], "simple_distinct": ["1.191.abb", "1.191.au"], "simple_factors": ["1.191.abbA", "1.191.auA"], "simple_multiplicities": [1, 1], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.207025.1", "splitting_polynomials": [[79, 53, 8, -1, 1]], "twist_count": 4, "twists": [["2.191.ah_agc", "2.36481.aob_enem", 2], ["2.191.h_agc", "2.36481.aob_enem", 2], ["2.191.bv_bjm", "2.36481.aob_enem", 2]]}